
Corpus-based Predictive Text Input

Hiroyuki Komatsu

Tokyo Institute of Technology

Ookayama 2-12-1 W7 1F 102,
Meguro-ku, Tokyo, JAPAN

komatsu@matsulab.is.titech.ac.jp

Satoru Takabayashi

National Institute of
Advanced Industrial

Science and Technology

2-28-8 Honkomagome,
Bunkyo-ku, Tokyo, JAPAN
s.takabayashi@aist.go.jp

Toshiyuki Masui

National Institute of
Advanced Industrial

Science and Technology

2-28-8 Honkomagome,
Bunkyo-ku, Tokyo, JAPAN

t.masui@aist.go.jp

Abstract

We introduce a new predictive text input system that uses
visited documents for predicting the user’s next input word.
With our method, users can efficiently compose new texts
using other documents as dictionaries for the input predic-
tion. We have developed a document storage system Kukura
that stores all the texts visited by users and cooperates with
our predictive input system PRIME. In this paper, we de-
scribe the design, implementation, and evaluation of our
approach.

1. Introduction

A predictive text input system predicts the user’s next in-
put word from the characteristics of natural languages and
the user’s text input history. It can dramatically reduce the
burden of text input tasks [1, 2, 7, 9], especially in environ-
ments where standard full-size keyboards cannot be used.
When a user of a predictive text input system types the “a”
key and “p” key to enter “application”, the system suggests
“apple”, “application”, and other words which begins with
“ap” so that the user can easily select “application” from the
list (Figure 1, 2).

Predictive text input systems are now widely used on
Japanese mobile phones and PDAs, with which users can
enter Japanese Kanji characters only by specifying a small
portion of the pronunciation of the input word. Candidate
words are usually selected based on the word frequencies
and the user’s usage pattern, but it would be better if the sys-
tem can predict words based on the context of the text com-
position task. For example, when a user is writing an email
message to his friend, names of the people and places they
know would be better candidates than place names where
they’ve never visited.

���

������� 	 �������
 �����
 ���

��������
 �����	���

�

������� �

������� � ��� �!� "�#

��#�$ ��%&�

��������'�'

(�)�)�*,+.- (�/�+.021

354�6,798;:�<&= 7>4

6&4�<@?4�6

6&4�<

A�B

C�D�D�E F C�D�D�E G H5C�I!G J�K

C�D�D�J�G K�I!LMF�K�I

N�O

P�Q�Q�R S P�Q�Q�R T U�P�V�T W�X

P�Q�Q�W�T X�V�Y�S�X�V

Z�[\�]\�]\�]

^�_�_�` a ^�_�_�` b c�^�d�b e�f

^�_�_�e�b f�d�g�a�f�d

h

i�j�j�k l

i�j�j�k m n�i o!m p�q

i�q�r i�s&l

i�n�n�l�t�t

u

v�w�w�x y

v�w�w�x z {�v |!z }�~

v�~�� v��&y

v�{�{�y����

�������,�.� �����.�2�

�5���,�9�;���&� �>�

�&���@����

�&���

�������,�.� �����.�2�

�5���,�9�; �¡&¢ �>�

�&��¡@£���

¤�¥�¥�¦,§.¨ ¤�©�§.ª2«

¬5�®,¯9°;±�²&³ ¯>

®&�²@´�®

®&�²

µ�¶

·�¸�¸�¹ º ·�¸�¸�¹ » ¼5·�½!» ¾�¿

·�¸�¸�¾�» ¿�½!ÀMº�¿�½

Á�ÂÃ�ÄÃ�ÄÃ�Ä

Å�Æ�Æ�Ç È Å�Æ�Æ�Ç É Ê5Å�Ë!É Ì�Í

Å�Æ�Æ�Ì�É Í�Ë!ÎMÈ�Í�Ë

Figure 1. Predictive input in English (typing
“application”).

������������

�������
	

���

���

�� ��

���

�

����� �

� �

������������

���� �!
"

#��

$

#�%

&�'&�'&�'&�'(�)(�)(�)(�)(�)(�)(�)(�)(�)(�)(�)(�)

*�+�,�-
.

/�+

0

/�1

22 22

3�4

5

6�7�8 9

: ;

<< << == == == == == ==

>�?

@

A�B�C D

E F

Figure 2. Predictive input in Japanese.

In this case, the system can use old email messages ex-
changed between them for the prediction. The system can
also use the text displayed on the Web browser just before
composing the message, since there can be some relation
between the contents of the page and the text of the mes-
sage.

We have been developing a predictive text input system
which reflects the context of the user’s composition task, us-
ing a document storage system that stores all the texts ac-
cessed by the user (Figure 3).

���������
	����������������	���������	��
���! "�!#�$&%('*)*+

,�-.-0/ 1 23�451 687:9

;�<>=�?�@ A�BC@ D�=�ECF�G�HB�I�J�KLBM=�N

O0P

Q G�G�R = Q G�G�R @ A Q BC@ S�F

Q G�G�S�@ FBCN
=�FTB

U!6V2�W0XZY.7�4[9
\ Y�]MY \(\ Y:^`_�aZ45b:YcWV9Y \

d`6 \ ^.9 \ Y�][/ Y�2T4�1 7Ve
4�b:YZ2�607�4(Y�f�4

g�S�A�H�N
=�FB�I�B�S�< Q�h =�I�J�K�B�=�N
i�j!k"j!l�m&n(o*p*q

r�s.s0t u vw�x5u y8z:{|�}.}0~ � ����5� �8�:�

���>����� ���C� �����C������������L�M���

�0�

� ����� � � ����� � � � �C� ���

� ������� ��C�
���T�

���>����� ���C� �����C������������L�M���

�0�

� ����� � � ����� � � � �C� ���

� ������� ��C�
���T�

�0��0��0��0�

� ����� � � ����� � � � �C� ���

� ������� ��C�
���T�

�!�V���0�Z�.���[�
� �� M� �(� �:¡`¢�£Z�5¤:�c�V�� �
�!�V���0�Z�.���[�
� �� M� �(� �:¡`¢�£Z�5¤:�c�V�� �

¥`� � ¡.� � �� [~ ���T��� �V¦
��¤:�Z���0���(��§��
¥`� � ¡.� � �� [~ ���T��� �V¦
��¤:�Z���0���(��§��

Figure 3. Document storage system for pre-
dictive input system.

2. Predictive Input with a Document Storage
System

In order to perform context-based prediction, we have
been developing a predictive text input systemPRIMEand
a document storage systemKukura. PRIME is a general-
purpose predictive text input system, and it uses the data
stored in Kukura for context-based word prediction. Fig-
ure 4 shows the flow of data exchanged between PRIME,
Kukura, applications and the user.

��������� 	�
��
����

����������������� ��� �

! " � #�$ %&�'$ ���)(*��� " $ � �

+-, �.%0/21 , � ,
3 46507'8:9�;.<:=

3 4>507?8A@;CB>D?E>4�<:=

3 46507'8:4�F�B&G H'I.9KJMLN;?G O
B'I�@;CB>D?E>4KJN9�;�P�7 <:=

QSRUT��

VU� ,�" � ! WUX6+*Y

Z�[�\ $ ��]_^0� [�
3 46507'8:9>< `'<C;a<A=

� , ��#�$ # , ���cbd� " #e�
3 46507'8A@;CB>D?E>4�<af
8:9�;CE6B>D>G g?B'I>G 9�D6<:=

h)iji�k:l m��n�l o-p�R

1�e%0��qr�s���.�
3 4>507'@;CB>D?E>4KJM9�;�P�7

t 9>FU4�P'B'E64&=
uwvyxMvyz:{&|Cv-}K~0z:�
��� �.|�� ~0xN{0zC� vN�

� z:vy�M{yz:v
��� �?|�� ~0xN{yzC� vM�

��������� 	�
��
����

����������������� ��� �

! " � #�$ %&�'$ ���)(*��� " $ � �

+-, �.%0/21 , � ,
3 46507'8:9�;.<:=

3 4>507?8A@;CB>D?E>4�<:=

3 46507'8:4�F�B&G H'I.9KJMLN;?G O
B'I�@;CB>D?E>4KJN9�;�P�7 <:=

QSRUT��

VU� ,�" � ! WUX6+*Y

Z�[�\ $ ��]_^0� [�
3 46507'8:9>< `'<C;a<A=

� , ��#�$ # , ���cbd� " #e�
3 46507'8A@;CB>D?E>4�<af
8:9�;CE6B>D>G g?B'I>G 9�D6<:=

h)iji�k:l m��n�l o-p�R

1�e%0��qr�s���.�
3 4>507'@;CB>D?E>4KJM9�;�P�7

t 9>FU4�P'B'E64&=
uwvyxMvyz:{&|Cv-}K~0z:�
��� �.|�� ~0xN{0zC� vN�

� z:vy�M{yz:v
��� �?|�� ~0xN{yzC� vM�

Figure 4. Process flow diagram between com-
ponents.

2.1. PRIME

We have been developing a general-purpose predictive
input system PRIME[4](Figure 5), and distributing it as a
free software under the GPL2 license1. PRIME runs on
Unix, MacOS, and Windows, and can be used for Japanese
and English text input.

Figure 5. Using PRIME on X11.

Unlike other predictive text input systems, PRIME can
generate more than one words as one candidate. For ex-
ample, PRIME can predict a combined word like “context-
based” from “con” or “context-b”.

2.2. Kukura

Kukura is a document storage system that stores all the
text data accessed by users. When a user browses a Web
page or reads a text document, words in the document are
saved into the Kukura database. Application programs can
communicate with Kukura to access the database, and use
it to predict the user’s next input (Figure 3). Since Kukura
keeps all the word occurrences of visited documents, it
can be used as an information retrieval system, just like
Google’s Desktop Search system2.

In our current implementation, Kukura can handle Web
pages accessed by the user, exchanged email messages, chat
logs of instant messengers, and document files under speci-
fied directories.

2.3. Compound Word Generation

For effective word prediction, Kukura generates com-
pound words like “John Smith” and “document storage sys-

1 http://sourceforge.jp/projects/prime/
2 http://desktop.google.com/

tem” in addition to single words, because compound words
tend to reflect the context of the document better than single
words. For example, while words like “document”, “stor-
age” and “system” are common to many documents, “doc-
ument storage system” reflects the characteristics of a doc-
ument like this paper.

Kukura generates compound words in English and
Japanese, using a POS (part of speech) analyzer and mor-
phological analyzers, in addition to heuristic knowl-
edge of both languages. After Kukura gets a list of words
with those POS from those analyzers, it constructs com-
pound words from the list. For example, when Kukura gets
the list [“This (pronoun)”, “is (verb)”, “a (article)”, “doc-
ument (noun)”, “storage (noun)”, “system (noun)”] from
“This is a document storage system”, it generates a com-
pound word “document storage system” from the grammat-
ical information.

2.4. Flexible Priorities of Words

Kukura attempts to store all the documents and extract
all the words from them so that PRIME could predict appro-
priate words. However, the priorities of the candidate words
generated by Kukura are kept lower than general words reg-
istered in the standard prediction dictionary. This is a prefer-
able strategy because users usually do not reuse all the text
they have seen.

For example, when a user is composing an email mes-
sage about going to a restaurant, she certainly wants to type
the name of a restaurant she has seen on a web page, but
she would not want to type it in other situations. Because of
this reason, PRIME changes the priorities of words gener-
ated by Kukura according to the user’s context.

3. Implementations

In this section, we show the implementation details of
Kukura and PRIME.

3.1. Collecting Data

Kukura takes three different strategies for collecting text
data from the documents accessed by the user.

• Checking Special Directories
Users can tell Kukura to check special directories

which holds cache or log files used by applications.
Web browsers and instant messengers usually keeps
those files in special directories, and Kukura can check
those directories periodically and find new and updated
files to update the dictionary database.

• Using Proxy Systems
Proxy systems are also used for extracting texts

from applications. In our current implementation, an

HTTP proxy and a command line proxy which logs all
the shell commands are used by Kukura. Using proxy
systems is sometimes better than checking special di-
rectories, since the system can collect data as soon as
they are used.

• Modifying Applications
We can also modify the behavior of each appli-

cation to communicate with Kukura directly. We are
using an Elisp (Emacs Lisp) program which directly
communicates with Kukura, so that Emacs can use all
the features of Kukura.

3.2. Handling Compound Words

Since compound words reflect the context of a docu-
ment better than single words, Kukura automatically gen-
erates compound words in both English and Japanese.

Kukura basically consults the POS value of each sin-
gle word to generate compound words in common, and
executes POS-and-morphological-analyzers to detect those
POSes. Kukura uses Wordnet[8] to detect POSes of words
in English, and uses MeCab[6] for Japanese.

In the current implementation, after calculating the POS
of each word, Kukura combines both noun, prefix and suf-
fix words and a part of unregistered words like “AMT2005”
and “セカチュー” into compound words. Using this method,
Kukura produces context-sensitive words such as “Kagawa
University” and “電車男”.

3.3. Predictive Input Using Stored Documents

PRIME can use multiple prediction engines at the same
time, and it can select one of the engines to communicate
with Kukura (Figure 6).

���������	��
���
�������
��������

������� �����
�! �" �����$# � �&%

')(+*�, - .0/
12- 3546- 7&(+8&9 : ;

.=<)9
12- 354>- 7&(+8&9 :

�����2� ���
�? �"A@CB�D�B�">E

F�G&H+G)9I8
1�8J4?8&K+8+.=<

L58)M+8&(+<+.=<
12- 3546- 7&(+8&9 :

�N���2� �����
�! �"POQE�R�E �����+�

���������	��
���
�������
��������

������� �����
�! �" �����$# � �&%
������� �����

�! �" �����$# � �&%

')(+*�, - .0/
12- 3546- 7&(+8&9 : ;

.=<)9
12- 354>- 7&(+8&9 :

�����2� ���
�? �"A@CB�D�B�">E

F�G&H+G)9I8
1�8J4?8&K+8+.=<

L58)M+8&(+<+.=<
12- 3546- 7&(+8&9 :

�N���2� �����
�! �"POQE�R�E �����+�
�N���2� �����

�! �"POQE�R�E �����+�

Figure 6. Multiple engines management by
PRIME.

A prediction engine for Kukura collects the context in-
formation from the user’s input history, the target applica-
tion, and its properties. For example, if a user is exchanging
messages with her friend, the prediction engine collects her
input history, the name of that chat software, and the user
ID of her friend.

4. Evaluations

We evaluated the effectiveness of our strategy with three
data sets:

• chat logs recorded over six months,

• results of compound words generated by Kukura, and

• input logs recorded by PRIME, usred with Kukura.

In this section, we first describe the reuse rate of words in
chat logs, and then we show examples of the generated com-
pound words. We will discuss the actual usage of PRIME
and Kukura at the end.

4.1. Reuse Rate of Words

To prove that predicted words generated by Kukura actu-
ally reflect the user’s input context, we calculated the word
reuse rate from a chat log exchanged between two users.
We used a chat log of MSN Messenger3 and calculated the
reuse rate with the following steps (Figure 7):

1. Remove controls tags from the log

2. Split the log by 1.5KB, and create a set of text files
F = [f1, f2, ..., fn].

3. Generate a set of dictionariesD = [d1, d2, ..., dn] from
F ; each dictionarydi is generated fromfi.

4. Generate another set of dictionariesE =
[e1, e2, ..., en]; each dictionary ei is generated
from the combination of[d1, d2, ..., di−1].

5. Get the common wordsci amongdi andei

6. Calculate the word reuse rates by diviging the number
of word indi (equal sdi) by the number of words inci

(equal sci).

We measured the reuse ratio using two chat logs recorded
over six months. Figure 8 shows the reuse rates calculated
from those chat logs.

Both of the graphs show that reuse ratio can reach as high
as 50% over time. Some of the most reused word are “XYZ
空間 (XYZ space)”, “日本語スペルチェッカ (Japanese spelling
checker)”, and “Cプログラミング (C programming)”.

The reuse ratio occasionally goes down to 20%, when
1) the topic of the conversation changed completely, or 2)

3 http://messenger.msn.com/

���

�����	��
���

�	� ��� �� � � ��

� �

� ���������
� �"!�#�!�#$!
�&%�'(�*)+)�,
�&- �/.0�2143*5�.�.76

�98 .0��:��$5
�0; 5�< �(:
�9= .0��>*5

� �?�$�����
� ��!�#$!�#$!
�&%�'(�*)+)@,
�0ACB .�D ��:

E � �E�F��

G 5 B*H 5*I"J+1K��.0I H .0�2�LD �M�*N � �POQE+F��"RSE � �

�T U

���

�����	��
���

�	� ��� �� � � ��

� �

� ���������
� �"!�#�!�#$!
�&%�'(�*)+)�,
�&- �/.0�2143*5�.�.76

�98 .0��:��$5
�0; 5�< �(:
�9= .0��>*5

� ���������
� �"!�#�!�#$!
�&%�'(�*)+)�,
�&- �/.0�2143*5�.�.76

�98 .0��:��$5
�0; 5�< �(:
�9= .0��>*5

� �?�$�����
� ��!�#$!�#$!
�&%�'(�*)+)@,
�0ACB .�D ��:

E � �E�F��
� �?�$�����
� ��!�#$!�#$!
�&%�'(�*)+)@,
�0ACB .�D ��:

E � �E�F��

G 5 B*H 5*I"J+1K��.0I H .0�2�LD �M�*N � �POQE+F��"RSE � �

�T U

Figure 7. How to evaluate ratios of reused
words on chat logs.

Kukura failed to parse the text which consists of colloquial
expressions and text-oriented figures like Figure 9.

4.2. Compound Word Examples

We could find the following compound words in the
Kukura database:

• Software Engineer
• Unix programming
• Mountain View(city in California)
• お気に入り-カフェ (“favorite cafe”)
• 簡易-乾燥-機-付き (“with tiny dryer”)
• 山-廃-純-米-吟醸 (Japanese sake of special make)

Those words actually reflect the context of documents.
However in our current implementation, Kukura under-

stands neither preposition (e.g. “of”) nor postpositional par-
ticle words (e.g. “の”) in Japanese, so Kukura fails to gener-
ate compound words like “Amulet of Yendor” and “徹子の
部屋”. We are developing the new version of Kukura which
can handle these types of compound words.

4.3. Usage Experiences

We collected a log of user input with PRIME and Kukura
in Japanese4, and Table1 shows some of the words input by
the user. All of those words were not found in the original
PRIME dictionary, but generated by Kukura after the user’s
text input operations.

“アダージョ” is the name of a local restaurant, and “料
理写真日記” is the title of a blog. They are too special to

4 Correctly, the user used OpenPOBox which is the former version of
PRIME.

���
�����
�����
�����
�����
	����

����
����
�����
�����
�������

� ��� ��� ��� ��� 	��
�� ��� ��� ���
���������������!

" #
$% &
&
' (
) *
+)
,
-&(
, +

���
�����
�����
�����
�����
	����

����
����
�����
�����
�������

� ��� ��� ��� ��� 	��
�� ��� ��� ���
������������ �!�"

$
%& '
'
()
* +
,*
-
.')
- ,

Figure 8. Ratios of reused words on chat
logs.

be registered in the standard word dictionary of PRIME, de-
spite the fact that it can contain more than 250,000 words.
5 Most of the users never have a chance to use these words,
but Kukura could automatically register them to the dictio-
nary and make them available to the user.

The rest of the words in the table are also compound
words, and all of the words are predicted from the user in-
put before the user had actually typed the complete pronun-
ciations. If the user had not used Kukura, he would have
needed to type those whole pronunciations. These facts
show that Kukura successfully generates compound words
from the context.

5 the PRIME dictionary is the biggest dictionary in free software
Japanese input systems now.

Figure 9. A sample of text-oriented figures.

Inputted word Pronunciation (Typed characters)
アダージョ ada-jo
アルバイトさん arubaitosann
同音語辞書 douoonnigigojisho
校正ツール kouseitu-ru
プロモーションビデオ puromo-shonnbideo
料理写真日記 ryourishasinnnikki
かな漢字変換ソフトウェア kanakannjihennkannsofutowea

Table 1. Automatically created input words.

5. Related Work

Nanashiki[5] is another predictive text input system we
have developed. Nanashiki focuses only on the current doc-
ument the user is composing, because the current document
is supposed to have the context the user is typing (Figure
10).

Nanashiki dynamically extracts candidate words from
the current document and use them for prediction, so that
it can make good use of changing texts such as instant mes-
senger’s logs.

���������
	�����
� ����������������������� �"!
�$#&%('�)�*�*,+.-

/�0�1
230�4�4�5 	76 0 �8	7��9;: 230 9=<�: 230�4�4�5 �;: -

���������
	>����
� ����������������������� �"!
�$#&%('�)�*�*,+.-

/�0�1
230�4�4�5 	76 0 �8	7��9;: 230 9=<�: 230�4�4�5 �;: -

�����?�@�(>���A
� �������������������B�C����!
�$#A%B'D)�*�*?+ -

/�0�1
2 #A%B'D)�*�*?+ : 230�4�4�5 	76 0 �E	7�?9;: -

�����?�@�
	����A
� �������������������B��� ��!
�$#A%B'D)�*�*,+ -

/�0�1
2 #A%B'D)�*�*?+ : 230�4�4�5 	F6 0 �8	7��9;: -

GIH JLKNM"OQPRORS�KTHVUWH
���������
	�����
� ����������������������� �"!
�$#&%('�)�*�*,+.-

/�0�1
230�4�4�5 	76 0 �8	7��9;: 230 9=<�: 230�4�4�5 �;: -

���������
	>����
� ����������������������� �"!
�$#&%('�)�*�*,+.-

/�0�1
230�4�4�5 	76 0 �8	7��9;: 230 9=<�: 230�4�4�5 �;: -

���������
	�����
� ����������������������� �"!
�$#&%('�)�*�*,+.-

/�0�1
230�4�4�5 	76 0 �8	7��9;: 230 9=<�: 230�4�4�5 �;: -

���������
	>����
� ����������������������� �"!
�$#&%('�)�*�*,+.-

/�0�1
230�4�4�5 	76 0 �8	7��9;: 230 9=<�: 230�4�4�5 �;: -

�����?�@�(>���A
� �������������������B�C����!
�$#A%B'D)�*�*?+ -

/�0�1
2 #A%B'D)�*�*?+ : 230�4�4�5 	76 0 �E	7�?9;: -

�����?�@�
	����A
� �������������������B��� ��!
�$#A%B'D)�*�*,+ -

/�0�1
2 #A%B'D)�*�*?+ : 230�4�4�5 	F6 0 �8	7��9;: -

�����?�@�(>���A
� �������������������B�C����!
�$#A%B'D)�*�*?+ -

/�0�1
2 #A%B'D)�*�*?+ : 230�4�4�5 	76 0 �E	7�?9;: -

�����?�@�
	����A
� �������������������B��� ��!
�$#A%B'D)�*�*,+ -

/�0�1
2 #A%B'D)�*�*?+ : 230�4�4�5 	F6 0 �8	7��9;: -

GIH JLKNM"OQPRORS�KTHVUWH

Figure 10. Word prediction by Nanashiki.

Japanist[1] is another predictive input system by Fu-
jitsu which also generates a word dictionary from the user’s
documents. Kukura generates its dictionaries automatically,
while Japanist requires the user to specify which documents
should be used for the prediction.

Google Desktop Search[3] provides a local document
search and merges it into the web search by Google, so
that a user can search document files read by the user with

the same interface as web search. If Google Desktop Search
would generate word dictionaries from its crawled files, pre-
dictive input systems could utilize them instead of using
Kukura.

6. Conclusions

We proposed a new predictive text input system inte-
grated with a document database which collects all the text
browsed by the user. This system predicts and suggests
more context-sensitive words to the users, and generates
word dictionaries from the browsed documents.

Since the next version of Microsoft Windows
(LongHorn) attempts to provide a local file search
system in a user’s PC like Google Desktop Search, al-
most all computers will be able to perform document
search much more easily than using current standard per-
sonal computers. We believe that this kind of innovative
text retrieval technologies can be of great help to effi-
cient text input in the future.

References

[1] Fujitsu Limited. Japanist, 2000. http://software.fujitsu.com/
jp/japanist/.

[2] T. Fukushima and H. Yamada. A predictive pen-based
japanese text input method and its evaluation.IPSJ Journal,
37(1):23–30, 1996.

[3] I. Google. Google desktop search, 2004.
http://desktop.google.com/.

[4] H. Komatsu. Prime: Predictive input method editor, 2002.
http://taiyaki.org/prime/.

[5] H. Komatsu, S. Takabayashi, and T. Masui. Context-aware
predictive text input method using dynamic abbreviation ex-
pansion.IPSJ Journal, 44(11):2538–2546, 2003.

[6] T. Kudo. Mecab: Yet another part-of-speech and morphologi-
cal analyzer, 2001. http://chasen.org/˜taku/software/mecab/.

[7] T. Masui. An efficient text input method for pen-based com-
puters. InProceedings of the ACM Conference on Human
Factors in Computing Systems (CHI ’98), pages 328–335.
Addison-Wesley, April 1998.

[8] G. A. Miller. Wordnet. http://www.cogsci.princeton.edu/˜wn/
.

[9] K. Tanaka-Ishii, Y. Inutsuka, and M. Takeichi. Entering text
using a four button device. In19th International Conference
on Computational Linguistics, pages 988–994, 2002.

