
HyperSnapping

Toshiyuki Masui
Sony Computer Science Laboratories, Inc.

3-14-13 Higashi-Gotanda, Shinagawa, Tokyo 141-0022, Japan.
masui@acm.org

Abstract

We introduce a new drawing technique called Hyper-
Snapping. In many drawing editors, various operations
are provided for object alignment, and snapping is one of
the most frequently used techniques, with which users can
snap the mouse cursor or dragged objects to existing ob-
jects or square grids. HyperSnapping is an extension to
snapping operations, where users can control the behavior
of snapping grids and the constraints between objects only
by dragging objects, without explicitly changing drawing
modes. With HyperSnapping, simple constraints and draw-
ing macros can easily be constructed and used for further
editing without explicit end-user programming.

1. Introduction

When drawing figures using drawing editors, various
constraints can be used to make them look better. Aligned
figures usually look better than randomly laid out figures.
When drawing a rectangle at the center of a page, it looks
better if the left and right margins are equal. Many draw-
ing editors provide special commands for alignment and
centering operations.

In many drawing editors, “snapping grids” can be used
for object alignment, where users can drag objects and snap
them to the grids, just like drawing figures on graph paper.
Using grids, users can easily make multiple objects have
the same X/Y coordinate, or lay out multiple objects with
the same margins. Sophisticated editors provide “Snap-
Dragging”[2], with which the mouse cursor automatically
snaps to a position which is aligned to existing objects.

Functions for grids and Snap-Dragging are usually pre-
defined in each drawing editor, and users cannot customize
the behavior of the constraints. For users who want to use
more complex constraints, various “constraint editors” have
been developed. Using a constraint editor, users can define
arbitrary constraints between drawing objects and make the
editor solve the constraints automatically. For example, if

a user defines a constraint which requires that the distance
between rectangle A and rectangle B should always be the
same as the distance between B and C, B is always at the
center of A and C, no matter where he moves these objects.

Constraint editors have long been studied and they have
great potential, but they are not widely used at this moment
yet, partly because solving the constraints is not always an
easy task, but mainly because most users do not want to take
time to define and maintain constraints for simple drawing
tasks. Users have to debug the constraints if the specified
constraints are wrong or inappropriate, and the system could
not solve them.

Gleicher’s Briar[4] is a constraint editor where users can
define constraints easily by using Snap-Dragging. Instead of
defining constraints with extra operations, users can tell their
intentions to the system only by performing Snap-Dragging
operations. This technique has the nice feature that users
cannot define unsolvable constraints. Briar can be viewed
as a programming-by-example (PBE) system[3][6], since
users can make a constraint-based program just by showing
the system what they want to get, not by telling how to solve
the problem.

Using Briar is much easier than using a constraint edi-
tor which requires explicit programming, but it is still too
complicated for end users. Because Briar is based on Snap-
Dragging, telling the users’ intention can be ambiguous. For
example, when a user places the mouse cursor at the inter-
section of line A and line B, the user’s intention might be
either 1) put the cursor at the intersection, 2) put the cursor
on line A, 3) put the cursor on line B, or 4) put the cursor at
that point. To tell his intention, he has to select one of them
with extra operations.

We propose a simple drawing technique called Hyper-
Snapping, with which users can lay out multiple objects
using simple and powerful snapping operations, define con-
straints between objects only by the snapping operations,
and define macros and constraints from operation histories.



2. HyperSnapping

HyperSnapping is a simple editing technique which en-
ables simple constraint programming. HyperSnapping has
the following features:

� Automatic snapping

When a user starts dragging an object, it follows the
cursor without snapping to anything. When the user
moves the object farther than a certain distance, a small
grid appears and the object begins snapping to other
objects and grids. If the user moves the object further-
more, the size of the grid becomes larger, and the object
snaps to larger grids. When the user finishes dragging,
the grid disappears and snapping is disabled again.

� Automatic grid selection

When a user drags an object and snaps it to other objects
or the grid, the size and position of the grid does not
change. If the user drags an object and does not snap it
to anything else, the object becomes the basis for later
snapping operations, and new grids are created based
on the size and the position of the object.

� Defining constraints from successive snapping opera-
tions

When a user drags an object and snaps it to the grid,
the object becomes the “anchor object.” A point on
the object becomes the “anchor point”, which is used
as the pivot of various operations. When more than
one vertex snap to the grid, one of them is selected by
the cursor’s moving direction. When the user drags
another object and snaps it to the anchor object, a “sub-
anchor point” is set on the object and the two objects are
grouped. When the user drags yet another object and
snaps it to the anchor object or the subanchor object,
another subanchor point is defined on the new object
and the three objects are grouped. A linear constraint is
defined between the anchor point and subanchor points.

� Defining constraints from operation histories

Just like the Dynamic Macro system[7] used in text edi-
tors, all the editing operations are recorded and used for
defining macros. If a macro is defined from repetitive
operations and executed afterwards, linear constraints
are defined between the objects.

3. Examples

In this section, we show the features of HyperSnapping
by showing examples.

Standard dragging operation

A user can drag an object by clicking the object and move
the mouse. Figure 1 shows how a rectangle can be dragged
freely using a mouse. (The mouse cursor is not shown in
this figure.)

Figure 1. Dragging a rectangle.

Automatic control of grid size

When the user drags an object more than a certain distance,
a snapping grid automatically appears and dragged objects
begin to snap to the grid. A vertex snapped to the grid is
called the anchor point. A small blue rectangle is displayed
on the anchor point, and the object which has the anchor
point is called the anchor object. The anchor point works as
a pivot for various operations.

When more than one vertex snap to the grid, one of them
is selected by the moving direction of the object. If the user
moves the mouse to the right, rightmost vertex becomes the
anchor point, even when other vertices are also snapped to
the grid.

Figure 2. Snapping to fine grid.

If the user keeps dragging the object, the size of the grid
becomes larger and larger, according to the amount of the
dragging. (Figure 3)

The size of the grid changes automatically. A user can
easily move an object to a distant place using a coarse-grain
grid, and after that, he can adjust the position of the object
without snapping, by starting the dragging operation again.



Figure 3. Snapping to coarse grid.

Changing the origin and the size of the grid

When a user moves an object without snapping, later snap-
ping is performed based on that object. For example, if a
user moves a 1cm2 square, 1/8cm, 1/4cm, 1/2cm, and 1cm
are selected as the grid sizes. If the triangle in Figure 3 is
used as the base object, the grid size is calculated from the
object, and other objects can easily be placed to have the
same X or Y position as the triangle. (Figure 4)

Figure 4. Using grids based on the base ob-
ject.

Using anchor point for rotation and magnification

Draggedobject can snap not only to grids, but also to vertices
and edges of other objects.

Just like snapping to grids, a dragged object does not snap
to other objects at the beginning of the dragging operation.
Afterdragging the object more than certain amount, it begins
to snap to other objects. Vertices of the dragged object snap
to vertices and edges of other objects. (Figure 5)

If a user wants to place object A very close to B, he can
first drag A and snap it to B, and then he can begin the
dragging operation again and adjust the position of A.

If a user clicks a point close to a vertex, he can begin
rotating the object, with the anchor point as the pivot. If a
user clicks a point close to an edge, he can change the size of

Figure 5. Snapping to vertices and edges.

the object. When the user moves the mouse cursor without
clicking the mouse, “shadow” shapes are displayed so that
the user can tell what operation is possible at the position.
Figure 6 shows the display when the user is trying to rotate
the object by pointing at the vertex at the other side from the
anchor point.

Figure 6. Rotation and magnification based
on the anchor point.



Since rotated objects and enlarged objects snap to grids
and other objects, the rotated rectangle in Figure 6 can easily
snap to the edge of the triangle, as shown in Figure 7.

Figure 7. Rotating a rectangle and snapping
it to an edge.

Group operations and automatic constraint generation

When an object is dragged and snapped to the anchor object,
a constraint between the two objects is established, and the
two objects will be treated as a group.

Figure 8. Three rectangles before snapping.

Figure 9. Moving the center rectangle and
snapping it to the left rectangle.

In Figure 8, when the rectangle at the center is snapped to
the left rectangle, the snapped vertex becomes the subanchor

and a small white rectangle is displayed at that point. (Figure
9)

If the user moves the right rectangle and snaps it to the
rectangle in the middle, another subanchor point is created
as shown in Figure 10. Linear constraints are automatically
established between the three objects, and if the user moves
the center rectangle or the right rectangle, the position of
other rectangles also changes accordingly, just as shown in
Rectangle 11.

Figure 10. Snapping the right rectangle to the
middle rectangle.

Figure 11. Dragging the right rectangle.

If the user moves the anchor object, all the subanchor
objects also move accordingly. (Figure 12.)



Figure 12. Dragging the anchor object.

If the user rotates the subanchor object, all the anchor and
subanchor objects rotate around the anchor point. (Figure
13)

Figure 13. Rotating a subanchor object.

If the anchor object is rotated or enlarged, all the suban-
chor objects are rotated or enlarged by the same amount.

When the user clicks at a point with no object, all the
anchor, subanchor, and constraints are cleared.

Creating constraints from repetitive operations.

Figure 14 shows the display after a user copies a rectangle,
pastes it, and snaps it to the original rectangle. If he performs
the same operation again, the display will change to Figure
15.

Figure 14. Duplicating a rectangle and snap-
ping it to the original rectangle.

Figure 15. After performing the same opera-
tion again.

If a user performs the same operation more than once, the
next operation can be predicted from the history of oper-
ations, using the prediction method used in the Dynamic
Macro system[7]. If the user asks the system to perform
the operation again, the repetitive operation is automatically
retrieved from the operation history and executed, resulting
in Figure 16.

Figure 16. Performing repetitive operations
automatically.

Constraints are kept between all the objects, and moving
any of the subanchor objects results in Figure 17.

Figure 17. Using the constraints defined by
repetitive operations.



Other drawing examples

Using the features of HyperSnapping, diagrams like Figure
18 can very easily be drawn.

Figure 18. Tangram.

A user is trying to place four aligned rectangles at the
edge of a triangle in Figure 19. It is very difficult to draw
this kind of figure with a drawing editor which does not
support snapping and constraints definition. Using Hyper-
Snapping, users can very easily draw this kind of figures
without invoking special commands or changing modes.

Figure 19. Drawing aligned rectangles at the
edge of a triangle.

4. Evaluations

The advantages of using HyperSnapping are as follows:

� Users can control the level of snapping only by drag-
ging objects.

� Users can define a group of objects and constraints
between objects without using extra operations.

With these features, users can very easily draw aligned
figures like Figure 19.

Also, HyperSnapping has the following advantage.

� Simple PBE methods can be applied based on the op-
eration history.

It is usually difficult to apply PBE techniques on graphi-
cal editors, since in many cases user’s intention is unclear to
the system and the system needs to infer the real intention
of the user’s operation. For example, when a user moves an
object to the left of the screen, the system cannot tell whether
1) he wanted to move the object to the left of the screen, 2)
he wanted to move the object closer to another object, or
3) he wanted to move the object by certain amount. In this
case, the system cannot create any program only from this
single example. With HyperSnapping, the user’s intention
is always clear to the system if the user sets the anchor and
subanchor points properly. Anchor and subanchor points
can be specified only by small mouse movement, and users
can easily tell their intentions to the system and take ad-
vantage of the constraints using the anchor and subanchor
points.

On the other hand, HyperSnapping has the following
shortcomings:

� Users cannot modify the predefined constraints defined
to each snapping operations.

� The group and constraints defined by the snapping op-
eration is temporary, and cannot be used later.

5. Related Works

Simple snapping features are available on most of the
drawing editors. More sophisticated snapping features like
Snap-Dragging[2] are now becoming popular and adopted
in several drawing editors1.

Honda proposed simple and powerful drawing operations
called Integrated Manipulation[5]. With Integrated Manip-
ulation, users can move/enlarge/rotate an object just by drag-
ging the object and moving it closer to another object. When
the dragged object gets closer to another object, a point in
the object (called the pivot) snaps to the target object, and
the dragged object automatically rotates and changes size
around the pivot. HyperSnapping does not support mov-
ing and rotating at the same time, but similar operation is
possible by snapping the anchor point and rotating around
it.

The history of constraint-based drawing editors is very
long. SketchPad[10], Juno[9], and many other systems have
been developed and various algorithms for solving con-
straints have been proposed. However, none of them has
become popular and widely used, maybe because of the
difficulty of programming the constraints.

As we mentioned in section 1, the basic idea of Briar[4] is
very close to HyperSnapping in that snapping operations are

1Snap-Dragging is available on Adobe Illustrator 8.0.



usedfor defining constraints. In HyperSnapping, the amount
of snapping is automatically controlled by the user’s drag-
ging operation, and although the programmable constraints
are very limited, almost no extra operations are required to
set up constraints, while the user must give extra informa-
tion to tell Briar which constraints should be used. Hyper-
Snapping can also use the operation history for constructing
constraints between objects.

Badros’ SCWM[1] is a window manager which enables
users to define constraints among the windows on the dis-
play, using tool buttons and the user’s voice. Using SCWM,
users can define sophisticate constraints either by using but-
tons or by writing Scheme scripts. Snapping operations
are not used in SCWM, but adding the automatic snapping
mechanism of HyperSnapping would be useful for easier
manipulation of windows.

To help users automate graphical editing tasks, many
PBE systems for graphical drawing have been proposed.
MetaMouse[8] is a system which infers the production rules
implicit in the user’s editing operations. Since it is difficult
to get the user’s intention only from the user’s editing oper-
ations, MetaMouse frequently asks the user questions about
why the user performed the operation, so that the system
does not make wrong guesses and create useless programs.
In HyperSnapping, since the constraints are very limited
and the user’s intentions are clearly specified by using an-
chor/subanchor points, questions to users are not necessary
at all.

In addition to the systems described above, a number
of snapping editors, constraint-based drawing systems, and
PBE-based drawing systems have been proposed and used.
Although HyperSnapping only offers limited features com-
pared to other sophisticated systems, it is a combination
of the essences of these approaches, and any end-user can
define constraints easily and use them effectively for his
drawing tasks.

6. Conclusions

We have developed a simple and powerful drawing tech-
nique called HyperSnapping. To be really successful, we
believe that end-user programming systems should be use-
ful and easy to use at the same time. Although being very
simple, HyperSnapping users can easily define constraints
between objects with simple operations, and use the con-
straints effectively for drawing tasks.

References

[1] G. J. Badros, J. Nichols, and A. Borning. Scwm: An intel-
ligent constraint-enabled window manager. In AAAI Spring
Symposium on Smart Graphics, March 2000.

[2] E. A. Bier. Snap-dragging. Computer Graphics, 20(4):233–
240, August 1986.

[3] A. Cypher, editor. Watch What I Do – Programming by
Demonstration. The MIT Press, Cambridge, MA 02142,
1993.

[4] M. Gleicher and A. Witkin. Drawing with constraints. The
Visual Computer, 11(1):39–51, 1994.

[5] M. Honda, T. Igarashi, H. Tanaka, and S. Sakai. Integrated
manipulation: Context-aware manipulation of 2d diagrams.
In Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST’99), pages 159–160. ACM
Press, November 1999.

[6] H. Lieberman, editor. Your Wish is My Command – Program-
ming by Example. Morgan Kaufmann Publishers, 2001.

[7] T. Masui and K. Nakayama. Repeat and predict – two keys to
efficient text editing. In Proceedings of the ACM Conference
on Human Factors in Computing Systems (CHI’94), pages
118–123. Addison-Wesley, April 1994.

[8] D. L. Maulsby, I. H. Witten, and K. A. Kittlitz. Metamouse:
Specifying graphical procedures by example. In Proceedings
of SIGGRAPH’89, volume 23, pages 127–136, Boston, MA,
July 1989.

[9] G. Nelson. Juno, a constraint-based graphics system. Com-
puter Graphics, 19(3):235–243, July 1985.

[10] I. Sutherland. Sketchpad: A man-machine graphical com-
munication system. IFIPS Proceedings of the Spring Joint
Computer Conference, January 1963.


