
The Furniture of
Ubiquitous Computing

Sho Hashimoto
Keio University
5322 Endo
Fujisawa, Kanagawa 252-8520
Japan
hashimoto@shokai.org

Toshiyuki Masui
Keio University
5322 Endo
Fujisawa, Kanagawa 252-8520
Japan
masui@pitecan.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
UbiComp’13 Adjunct, September 8–12, 2013, Zurich, Switzerland.
Copyright c⃝ 2013 ACM 978-1-4503-2215-7/13/09...$15.00.

DOI string from ACM form confirmation

Abstract
Although various ubicomp technologies have been
proposed for home environments, few people are enjoying
such technologies in their daily life, due to the lack of
powerful software framework for building flexible
applications for home. We are developing simple and
powerful ubicomp frameworks which can be used for
building furniture-embedded networked devices which fit
to home environments. Using our frameworks, many
devices can communicate with each other by exchanging
data shared on the Web server using standard HTTP. In
this paper, we describe the concepts and implementations
of the frameworks, and show how sparsely-connected
devices can cooperatively be used for various tasks needed
in home environments.

Author Keywords
Ubiquitous Computing, Real-World GUI, GoldFish, Linda

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g.,
HCI)]: Miscellaneous.

General Terms
Human Factors

Session: HomeSys 2013: Workshop on Design, Technology, Systems
and Applications for the Home

UbiComp’13, September 8–12, 2013, Zurich, Switzerland

845

Introduction
Although many interesting research projects have been
going on in the ubicomp research community, many of
them are not suited for home environment where special
sensing devices do not fit. Having visible desktop
computers and sensors in the home environment is not
favored by people, because most of such devices are either
ugly or alien to living room atmosphere. Some sensors can
make people nervous because people know that cameras
and sensing devices can easily cause privacy problems.

A good solution to this problem is to embed computers
and sensors in everyday objects like furniture and lighting
equipments so that people cannot notice the existence of
special devices and computers. Many researchers have
done experiments to use home furniture like wardrobes[8],
drawers[4], photo frames[3], trash boxes[9], curtains[2],
etc. Computing on tables and desks have long been a hot
research topic and many systems like DigitalDesk[12],
metaDESK[10], etc. have been researched. Using
computing resources in the kitchen has also been an
active research topic[3], and varioius augmented kitchen
appliances like microwaves[11] have been proposed.
Various intelligent light bulbs1234 have been proposed as
commercial products. Researchers have been trying to
build a house like TRON House5, AwareHome[3],
OchaHouse6, and KsiHome7 for the experiment of
ubiquitous computing in the real home environment.

1 http://www.kickstarter.com/projects/limemouse/lifx-the-light-
bulb-reinvented

2 https://www.facebook.com/lifxlabs
3 http://www.insteon.net/bulb.html
4 http://www.engadget.com/2012/08/19/bluetooth-bulb-lets-

you-switch-on-time-dim-and-color/
5http://monotsukuri.net/mirai98/tron/tron.htm
6http://ochahouse.com/
7http://www.kyoto-su.ac.jp/liaison/kenkyu/message56.html

Although furniture-based ubicomp systems are the right
approach, most of the existing research systems are just
experimental and few systems are continuously used even
by the authors, because of the following problems.

1. Aesthetics problem Most of the experimental
systems do not have good appearances and they are not
as beautifully designed as other furniture. If the devices
look ugly, family members would refuse to continue using
them at home.

2. Setup problem Many of the research systems
require special hardware/software settings before usage. If
a user has to register network parameters for all the
devices before he can use the system, he would not set
the parameters again when the network configuration is
changed.

3. Programming problem Parallel and distributed
programming under unreliable communication channel is
required for handling many devices at home, but such
programming is difficult without a flexible and reliable
parallel programming model.

4. Customization problem When a system is made up
of tightly-coupled modules, changing behaviors and adding
features is not easy. Most of the experimental systems are
not designed to be flexible enough, and the whole system
should be redesigned when additional devices are required
or the configuration should be modified.

Problem 1 can be solved if devices are hidden in existing
furniture, and problems 2, 3, 4 can be solved if we use a
powerful and flexible software architecture for the
furniture-based systems.

Session: HomeSys 2013: Workshop on Design, Technology, Systems
and Applications for the Home

UbiComp’13, September 8–12, 2013, Zurich, Switzerland

846

Frameworks for Home Environment
We have set up the following goals for the design of our
frameworks for furniture-based ubicomp systems:

• It should run on various devices, from one-board
computers to desktop PCs.

• Devices can be placed at any location.

• Programs should be written in multiple languages.

• The programming model should be simple and
flexible.

For these goals, we decided to use a Web server and
HTTP for all the communications between devices. Since
HTTP is an well-established protocol and supported by
many commercial products, we believe using HTTP is
better than using special protocols between devices.
Communication between a Web server and a browser had
to be initiated by the browser in the past, but using
modern browsers and Web servers which support
WebSocket8 and Comet9, more symmetric communication
between them are possible.

We introduce two frameworks, GoldFish and LindaBase,
for furniture-based ubicomp systems in the following
subsections. With our frameworks, we can use PCs,
iPhones/iPads, Android devices, and one-board computers
like Arduino10 and Raspberry Pi11 for constructing the
home ubicomp environment.

8 http://en.wikipedia.org/wiki/WebSocket
9 http://en.wikipedia.org/wiki/Comet (programming)

10 http://en.wikipedia.org/wiki/Arduino
11 http://en.wikipedia.org/wiki/Raspberry pi

GoldFish
GoldFish[5] is a JavaScript framework for developing
“Real-World GUI (RWGUI)”[6] using an Android phone
equipped with an NFC reader. Using the NFC reader and
motion sensors at the same time, users can control various
parameters by moving the phone on NFC tags, just like
using a mouse for controlling menus and scroll bars on a
PC. All the control programs are written in JavaScript
and put on the Web so that users do not have to install
different Android programs for different tags.

GoldFish is based on the same idea as the FieldMouse
system[7]. We put NFC tags where we want to control
data by GUI actions. If a user wants to control the sound
volume of a TV from the dining table, he puts an NFC
tag on the table, and when he puts his Android phone
close to the tag, a special application on Android is
automatically launched and recognizes his subsequent
actions to control the TV; e.g. the application can detect
the rotation of the phone and wirelessly tell the TV to
modify the volume based on the angle.

We have created the GoldFish framework to enable such
GUI operations just by writing a simple JavaScript code
on the Web. When an Android phone recognizes an NFC
tag, the GoldFish application on Android is launched and
tries to display an Web page http://ubif.org/(NFC-ID) on
the browser. The user can then use arbitrary JavaScript
programs to read the sensor data of Android and perform
GUI actions based on the data.

Figure 1 shows how we can copy/paste data between a
PC and an Android phone. An NFC tag is put on the
edge of the PC screen, and when a user puts his Android
phone on the tag, a goldfish icon appears on the Android
screen. If he twists the phone clockwise, the data on the

Session: HomeSys 2013: Workshop on Design, Technology, Systems
and Applications for the Home

UbiComp’13, September 8–12, 2013, Zurich, Switzerland

847

PC is copied to the phone, and the data on the phone is
pasted to the PC if he twists the phone counterclockwise.

Figure 1: Real-world copy/paste.

Figure 2 shows a RWGUI program which uses the value
given from the goldfish object.

var angle = 0;

setInterval(function (){

var gyro = goldfish.gyroscope();

angle += gyro.z * 3;

// do actions based on the angle value

}, 50);

Figure 2: A JavaScript code for detecting rotation.

LindaBase
For simple and powerful communication between devices
at home, we developed a framework called LindaBase,
which is an Web-based implementation of Linda[1], a
“coordination language” for parallel programming. Linda
is made up of several primitives operating on data objects
called “tuples” placed in the “tuple space” shared by
multiple processes. A tuple is represented as an array of

objects and handled from programming languages like C,
JavaScript, Ruby, etc.

The original Linda model requires four operations for
handling tuples and the tuple space:

• in: atomically reads and removes a tuple from
tuplespace

• rd: non-destructively reads a tuplespace

• out: produces a tuple, writing it into tuplespace

• eval: creates new processes to evaluate tuples,
writing the result into tuplespace

Based on this model, LindaBase is implemented on an
nginx12 Web server, and the tuple space is implemented
on Sinatra13. Various programs and devices can connect
to the LindaBase server via HTTP and communicate with
each other by using tuples using Linda operations.

Implementation of LindaBase
Requests from the client to the Web server is initiated by
standard HTTP GET/POST, and request from the server
to the client is performed by Comet or WebSocket based
on whether HTML5 is supported. LindaBase is
implemented using the RocketIO14, a Ruby library which
resembles Socket.IO15, for realtime communication
between the Web server and clients.

Using the LindaBase server, all the Linda operations like
in, out can be performed only using HTTP, and wide

12 http://en.wikipedia.org/wiki/Nginx
13 http://en.wikipedia.org/wiki/Sinatra (software)
14 http://shokai.org/blog/archives/7180
15 http://en.wikipedia.org/wiki/Socket.IO

Session: HomeSys 2013: Workshop on Design, Technology, Systems
and Applications for the Home

UbiComp’13, September 8–12, 2013, Zurich, Switzerland

848

variety of devices can freely join or leave the network.
Tuples are represented in the JSON16 format so that
various systems can handle tuples easily.

For example, an Arduino in the living room can sense the
status of the light bulb of the room, and the data is sent
to a PC and then put to the tuple space using the
following Ruby program:

ts = Linda::Client.new.tuplespace["myhouse"]

loop do

light = arduino.analog_read 0

ts.out ["sensor", "light", light]

sleep 1

end

A JavaScript program running on a browser on a different
machine can read the tuple and see whether the light of
the room is on or off.

var ts = new Linda().TupleSpace("myhouse");

ts.rd(["sensor", "light"],

function(tuple){ alert(tuple); });

A separate program running on another PC can
continuously monitor the same data and check if the light
is turned on or off, and tweet the information on Twitter.

Here, each program does not have to know what other
programs are doing; each program only communicates
with the tuple space and takes care of the tuples of their
interest. With such loose connection between processes
sharing the same tuple space, simple but powerful
cooperation becomes possible. Processes can be added,
removed, and modified without affecting other processes.

16 http://en.wikipedia.org/wiki/JavaScript Object Notation

Examples
We can use the combination of GoldFish and LindaBase
for controlling various objects in home environment.

Opening a door
We can open the door with an Android phone using
GoldFish and LindaBase. When a user touches the NFC
tag on the wall with an Android phone equipped with
GoldFish, an image of a thumb-turn lock appears, and the
user can rotate the phone to unlock it. (Figure 3)

Figure 3: Using an Android phone for unlocking the door.

A tuple “["door", "open"]” is put into the tuple space
from the phone when the user rotates the Android phone.
When a PC at the door detects the tuple, it controls the
Phidgets17 servo motor to rotate the thumb-turn lock.
(Figure 4)

17 http://www.phidgets.com/

Session: HomeSys 2013: Workshop on Design, Technology, Systems
and Applications for the Home

UbiComp’13, September 8–12, 2013, Zurich, Switzerland

849

Figure 4: Unlocking mechanism.

If we want to use a different strategy for opening the
door, we can just use a new device which puts the same
tuple into the tuple space, and no modification to existing
systems is necessary.

Home inventory management
At the supermarket, we often want to know if we have
coffee in stock at home. It might be possible to install a
special coffee sensor in the kitchen to report the status on
the Web, but having such sensors for everything is not
practical. Better approach would be using a “coffee clip”
shown in Figure 5 with an RFID tag, where unused clip
means that coffee is out of stock.

Figure 5: Coffee bag with a
coffee clip.

When the clip is put on a tray with an RFID reader, it
puts a tuple “["coffeestock", false]” in the tuple
space so that a user can check it at the supermarket using
an application which accesses the tuple space on the Web.

Getting data from the Web
We can use existing Web services to get data in the real
world and share the data in the tuple space. Figure 6

shows a portion of the Web page of Enoshima marina18,
where current wind speed of the shore is displayed. We
are running a daemon program which periodically
“scrapes” the HTML data and puts the wind data into
the tuple space, so that a pinwheel system running on
Arduino can use the data to physically display current
wind speed at home.

Figure 6: Wind strength at Enoshima marina.

Conclusion
We have introduced two frameworks for quickly and easily
building furniture-based ubicomp systems for the home.
Using our frameworks, we can flexibly integrate PCs,
mobile phones, and off-the-shelf I/O devices for building
useful home applications. Based on our frameworks, we
are building a wide range of furniture-based ubicomp
environment which is really usable in ordinary households.

References
[1] Carriero, N., and Gelernter, D. Linda in context.

Communications of the ACM 32, 4 (Apr. 1989),
444–458.

[2] Handa, T., Kambara, K., Tsukada, K., and Siio, I.
SmoothCurtain: privacy controlling video
communication device. In Supplemental Proceedings

18 http://enoshima-yacht-harbor.jp/index4.htm

Session: HomeSys 2013: Workshop on Design, Technology, Systems
and Applications for the Home

UbiComp’13, September 8–12, 2013, Zurich, Switzerland

850

of the 11th Ubicomp 2009 (2009), 186–187.
[3] Kientz, J. A., Patel, S. N., Jones, B., Price, E.,

Mynatt, E. D., and Abowd, G. D. The Georgia Tech
Aware Home. In CHI ’08 Extended Abstracts on
Human Factors in Computing Systems (2008),
3675–3680.

[4] Komatsuzaki, M., Tsukada, K., and Siio, I.
Drawerfinder: finding items in storage boxes using
pictures and visual markers. In Proceedings of the
16th international conference on Intelligent user
interfaces, IUI ’11 (2011), 363–366.

[5] Masui, T., and Hashimoto, S. GoldFish: real-world
GUI framework for Android. In SIGGRAPH Asia
2012 Symposium on Apps, SA ’12 (2012), 3:1–3:1.

[6] Masui, T., and Siio, I. Real-world graphical user
interfaces. In Proceedings of the 2nd international
symposium on Handheld and Ubiquitous Computing,
HUC ’00, Springer-Verlag (London, UK, UK, 2000),
72–84.

[7] Siio, I., Masui, T., and Fukuchi, K. Real-world
interaction using the fieldmouse. In Proceedings of
the 12th annual ACM symposium on User interface
software and technology, UIST ’99 (1999), 113–119.

[8] Siio, I., Rowan, J., and Mynatt, E. Finding objects in
”strata drawer”. In CHI ’03 Extended Abstracts on
Human Factors in Computing Systems (2003),
982–983.

[9] Tsujita, H., Tsukada, K., and Siio, I. SyncDecor:
communication appliances for virtual cohabitation. In
Proceedings of the working conference on Advanced
visual interfaces, AVI ’08 (2008), 449–453.

[10] Ullmer, B., and Ishii, H. The metaDESK: models and
prototypes for tangible user interfaces. In
Proceedings of the 10th annual ACM symposium on
User interface software and technology, UIST ’97,
ACM (New York, NY, USA, 1997), 223–232.

[11] Watanabe, K., Matsuda, S., Yasumura, M., Inami,
M., and Igarashi, T. Castoven: a microwave oven
with just-in-time video clips. In Proceedings of the
12th ACM international conference adjunct papers
on Ubiquitous computing - Adjunct, Ubicomp ’10
Adjunct (2010), 385–386.

[12] Wellner, P. Interacting with paper on the
DigitalDesk. Communications of the ACM 36, 7
(July 1993), 87–96.

Session: HomeSys 2013: Workshop on Design, Technology, Systems
and Applications for the Home

UbiComp’13, September 8–12, 2013, Zurich, Switzerland

851

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 173.89, 54.64 Width 147.31 Height 17.46 points
 Mask co-ordinates: Horizontal, vertical offset 173.13, 62.23 Width 121.50 Height 11.39 points
 Origin: bottom left

 1
 0
 BL

 31
 CurrentPage
 33

 CurrentAVDoc

 173.8899 54.641 147.3129 17.4649 173.1306 62.2345 121.4951 11.3902

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 7
 0
 1

 1

 HistoryList_V1
 qi2base

