
LensBar – Visualization for Browsing and Filtering Large Lists of Data

Toshiyuki Masui
Sony Computer Science Laboratories, Inc.

3-14-13 Higashi-Gotanda, Shinagawa, Tokyo 141-0022, Japan.
masui@csl.sony.co.jp

Abstract

We propose a simple and powerful graphical interface
tool called the LensBar for filtering and visualizing large
lists of data. Browsing and querying are the most impor-
tant tasks in retrieving information and LensBar integrates
the two techniques into a simple scroll window with slider.
While it looks familiar to users of conventional graphical
interface tools, its filtering and zooming features offer so-
phisticated handling of large lists of textual data.

1 Introduction

Various visualization techniques for browsing large
amount of data have been proposed recently. A number
of information retrieval techniques for filtering huge chunks
of data using query keywords have also been proposed. In
some systems, visualization and filtering are integrated, al-
lowing users to filter and browse data at the same time.

Although the combination of browsing and querying is
more powerful than doing each separately, most existing
systems suffer from several shortcomings. First, most of
the visualization techniques are far from general-purpose,
applicable only to special application domains. Second,
special interaction techniques are usually required to effec-
tively filter data and control the visualization result. For
example, with the FilmFinder system[2], users can get in-
formation on movie titles by entering the names of actors
or years of production, and they can control the visualized
query result displayed as a 2-dimensional scattered plot.
The filtering and visualization method is valid only for this
particular application, and the overall design of the visual-
ization and interaction techniques would need to be modified
for different applications.

It is natural that the handling of special data requires spe-
cial visualization and interaction techniques, but it seems
strange that not many effective techniques for query and
visualization have been proposed and used widely even for
handling common data structures like texts or simple data

lists. We propose a simple, powerful interface tool called
LensBar for filtering and visualizing large data lists. Lens-
Bar works as an extension to a conventional scroll window
or a substitute for a hierarchical menu, and it can be applied
to wide range of applications where these tools are currently
used.

2 Visualization and interaction techniques

Our technique is based on the following strategies:

� Browsing the whole list using a precisely-controllable
slider and scroll window

� Controlling the amount of data to be displayed by key-
word filtering and zooming

� Visualizing the distribution of filtered data in the back-
ground of the slider

The following sections contain a detailed description of
the techniques.

Integrating browsing and querying To browse a large
list, we use a slider (scroll bar) with accompanying scroll
window, which is a common combination in current graph-
ical user interfaces. An extra text input area is added for
filtering list items, so that only those entries that match the
specified pattern are selected and displayed in the scroll win-
dow. At the same time, corresponding positions in the slider
background are highlighted to show the locations of entries
that match the pattern. For example, if the first entry in the
list matches the pattern, the top line of the slider background
is highlighted. When no pattern is specified, all lines in the
slider background are highlighted, yielding a highlighted
rectangle in the slider background. When a user tries to
move the slider knob, it moves only on the highlighted por-
tion. The highlighted region within the slider knob always
corresponds to the items displayed in the scroll window.

When the user modifies the query pattern, string matching
is immediately performed on all the entries in the list; the



slider background and scroll window display also change
immediately. With this dynamic query[18] feature, users
can easily find the relationship between a query pattern and
the distribution of data items.

Dynamic approximate string matching When no entry
in the list matches the specified pattern, dynamic approxi-
mate string matching[12] is done automatically, and entries
closest to the pattern are treated as matched. This is usu-
ally more convenient than giving no query result when no
match is found, and especially useful when users are not
very sure of the spelling, e.g., when searching for a word in
a dictionary of a foreign language.

Zooming interface Users can control the amount of in-
formation to be displayed by zooming operations. Before
zooming out, all the entries that match the query can be
displayed by moving the slider, just as with a conventional
scrolling window. Using LensBar, a user can control the
number of items to be displayed by changing the zooming
level. A DOI (degree of interest) value is dynamically as-
signed to each entry automatically, and only those entries
whose DOI value is bigger than the zooming level are se-
lected for display. For example, when the zooming level is
set to a large value, items with small DOI values disappear
to produce a zoom-out effect.

A zooming interface is essential in 3D interactive sys-
tems, and it has also been proved to be effective in 2D
GUI[3, 15]. Although zooming interfaces for handling (1D)
large lists are not as widely used as in handling 3D/2D
objects, they are convenient for controlling the amount of
displayed data.

Precise control of the slider Using a conventional slider,
precise scrolling of large data chunks is difficult, because
resolution of the display and the pointing device is low. To
enable precise control, conventional scroll bars sometimes
have up and down arrows around the knob or at the top
and bottom of the bar. Other techniques for fine control
of the slider have also been proposed[1, 13]; we adopted
the technique described in [13]. Clicking the mouse on the
slider knob allows the user to move the knob directly to any
place on the bar, as with a conventional slider. Clicking
on the scroll bar at a spot other than the knob moves the
knob toward the cursor location. Speed is proportional to
distance, giving the user an easy way to control speed.

3 Examples

The examples below show how each of the techniques
described in the previous section actually works. Since

LensBar is a general-purpose tool for visualizing and filter-
ing large lists, we introduce various examples to show how
the technique is applicable to different applications.

3.1 Example 1: Searching words in a dictionary

The first example shows how LensBar works in a simple
dictionary application.

Figure 1 shows the initial display of a dictionary appli-
cation using LensBar. A slider with a transparent knob is
displayed at left. In the background of the slider area, a
highlighted rectangle is displayed, showing that all dictio-
nary entries are selected for display. In Figure 1, only the ten
words corresponding to the position of the knob are shown
in the scrollable area at the right. The highlighted line at the
center of the knob shows the position and the size of the ten
words in the entire list.

The dictionary contains more than 30,000 words. The
knob can be dragged to any position in the dictionary, and
the user can click another place on the slider to move the
knob with more precision (Figure 2). The user can also drag
the scroll window by clicking the mouse in the window and
dragging it vertically.

In this dictionary application, a DOI value is assigned
to each line, as shown in Table 1. Since “graphics” is
currently selected, it has the largest DOI value. When the
user clicks the mouse on a word and drags it to the left,
the zooming level changes accordingly, and the number of
words to be displayed is gradually reduced and a wider range
of words appears in the scroll window. For example, when
the zooming level is 2.0, every second word on each side of
“graphics” is displayed. In Figure 3, every 256th word in
the dictionary is displayed (zooming level is around 9), and
in Figure 4, every 4096th word is displayed. Hidden entries
appear as gray lines between words. At the same time, the
background of the slider changes to show distribution of

Figure 1. Initial display of the dictionary ap-
plication



Figure 2. Scrolling the window

the selected words. As the range of the words displayed
becomes larger, the slider knob also becomes larger to cover
the area.

Figure 3. Zooming out to show every 256th
word

DOI value Entry
... ...
1 granule
2 grape
1 grapefruit
3 grapevine
1 graph
2 graphic
1 graphically

20 graphics
1 graphite
2 graph paper
... ...

Table 1. Assignment of DOI values

Figure 4. Zooming out more to show every
4096th word

The zoom level is determined by horizontal movement of
the mouse. Since the scrolling window follows the vertical
movement of the mouse, the mouse cursor is always on the
line of the same word (“graphics”, in this case) during
the zoom operation; when the user moves the mouse cursor
back to the previous position, the system returns to the pre-
vious state. This continuous and reversible characteristic of
the zooming interface[14] helps users easily recover from
erroneous operations.

When the user enters a pattern string, dynamic approx-
imate pattern matching is done and only those entries that
match the pattern are selected for display. Figure 5 shows
the display after the user specified “g” as the pattern string.
The whole list is filtered and only those words beginning
with “g” are selected and displayed.

A space (“ ”) is used as a wildcard, like the pattern “.*”
used in regular expressions. So when “ q” is specified as the
pattern, all the words that include the letter “q” are selected
(Figure 6). Since those words are scattered throughout the
dictionary, the highlighted area in the slider resembles a
comb.

Figure 5. Filtering by “g”



Figure 6. Filtering by “ q”

Let’s look for a word with a difficult spelling like
“Pithecanthropus”. Figure 7 shows the LensBar dis-
play after a user typed a wrong spelling “pite”, revealing
that only two words in the dictionary begin with “pite”.

Figure 7. Typing “pite”

Here, the user knows that “pite...” is not the right spelling
for “Pithecantropus”, but doesn’t know what other
letters to add.

Figure 8. Typing “pitec”

When the user types “c” next, the string matcher no-

Figure 9. “Pithecanthropus” found from
“piteca”

tices that no words in the dictionary begin with “pitec”,
so it searches and displays all words that match the pattern
“pitec” with one error. Many words including “pitch”
and “piteous” match “pitec” with one error, and they
are displayed in the scroll window. The text input area
becomes darker, showing that no exact match was found.
When the user types “a” next, words like “pitch” disap-
pear because they do not match “piteca” with one error,
and only “Pithecanthropus” displays. By dynamically
changing the parameter of the approximate string matching
algorithm and showing the words closest to the pattern, the
system allows users to see the candidates closest to the given
pattern and have better chance of finding the desired infor-
mation.

When not sure of the spelling, the user can explicitly
use wildcard characters instead of specifying uncertain let-
ters. Figure 10 shows a situation where a user tries to find
“Mediterranean”, and specifies only a few of the letters
thought to exist in that word. Since there are only five words
in the dictionary containing “m”, “d”, “t”, “r” and “n” in
their spelling, the user can easily find the desired word in
the list.

Figure 10. Typing “m d t r n”



3.2 Example 2: File/message browser

Handling a huge number of files and e-mail messages
is not trivial, especially when a user sends and receives a
number of e-mail messages every day. LensBar is very use-
ful for file/message browsers, since integration of browsing
and querying helps the user find the desired document or
message easily.

In the file/message browser shown in Figure 11, two
LensBars are used. The one at the top shows the titles of files
and messages listed in chronological order. The LensBar at
the bottom shows the contents of the selected message. It
does not have a text input area for filtering, but is used as a
substitute for a conventional scrollable text window (with a
scrollbar with uniform background.) When the user enters
a keyword, messages containing the keyword are selected,
and the content of the selected message is shown in the scroll
window at the bottom.

When a user enters the pattern “uist”, messages and
files related to the UIST conference are selected and listed.
Since the messages and files are listed in chronological order,
the user can see the activity related to the keyword. Here,
the user knows he was active on the subject around 3/17 and
1/27, and can check what he was doing around that time by
checking other files and messages around it. This feature
is useful for reminding a user of what was going on about
the time a message was received. In this sense, the browser
can be viewed as another implementation of the Lifestreams
system[7], with more powerful searching and browsing.

Figure 11. File/Message Browser

Figure 12. Filtering messages by “uist”

3.3 Example 3: Program browser

LensBar is also useful for browsing program text. Figure
13 shows how the source program lensbar.c can be
viewed using LensBar.

Figure 13. Program browser

When a variable name “mousex” is specified as the filter,
declaration statements and assignment statements related to
the variable are selected and listed in the scroll window (Fig-
ure 14). Positions corresponding to the lines are also shown
in the slider background, showing where in the program
those lines exist.



Figure 14. Selecting lines with “mousex”

DOI value Entry
0 displine()
0 {

-1 if(displayp){
...

0 }
0 lbmouse(LensBar *lb)
0 {
5 long mousex,mousey;

-1 long origx,origy;
...

5 mousex = getvaluator(MOUSEX);
5 startx = x = mousex - origx;

...
3 mousex = getvaluator(MOUSEX);

...
2 mousex = getvaluator(MOUSEX);

-4 display();
-1 }
0 }

Table 2. Assignment of DOI values

Since lines with less indentation are usually more impor-
tant in C program listings, large DOI values are assigned
to lines with small indentation, as shown in Table 2. Lines
that match the pattern string have positive DOI values, and
other lines have DOI values smaller than or equal to zero.
When the user drags the mouse to the right to expand the
list, lines with large DOI values emerge. Here, function
definitions can be seen in addition to the lines containing
“mousex” (Figure 15). In this way, users can focus on a
variable and examine a long program listing, while seeing
the global context, just as with the FractalView editor[10] or
other editors that supports focus+context editing based on
the generalized fisheye views technique[8].

Figure 15. Showing important lines in addi-
tion to selected lines

Since this program browser is line-oriented, extending it to
work as a text editor is simple.

3.4 Example 4: Hierarchical menu

LensBar can also be used as a substitute for a hierarchi-
cal menu. Although hierarchical menus are widely used
in current graphical user interfaces, they suffer many short-
comings. First, users can’t see how large and deep a menu is.
Second, users can’t tell whether the menu contains the entry
they want, until they intensively search the hierarchy. Third,
the operation is usually not reversible. That is, when a user
does something wrong (e.g., selecting a wrong menu entry),
it is not possible to return to the previous state by moving the
mouse in the reverse direction; the entire selection operation
must be completed.

Figure 16. Showing the top menu



Using a LensBar in place of a conventional hierarchical
menu solves the above problems. We show this by using
a Unix directory structure as an example of a very large
hierarchical menu.

Figure 16 shows the initial display of the menu. Files
and directories under /usr/lib/ are listed. In this appli-
cation, a large DOI value is assigned to higher-level menu
entries.

When the user clicks the mouse on X11 and drags to the
right, more files and directories with smaller DOI values
become visible, and subdirectories of the X11 directory
are displayed as if the directories were expanded like a
hierarchical menu. (Figure 17)

Figure 17. Expanding a sub menu

The user can further expand the subdirectories and find an
entryk14.pcf.Z (a font file) in theX11/fonts/misc/
directory.

Figure 18. Finding an entry

Dragging the mouse to the left shrinks the menu to look
like Figure 19. This is similar to Figure 17, but all opera-
tions are continuous and reversible, and unlike conventional
hierarchical menu, the user can easily go back and forth be-
tween Figure 18 and Figure 19, just by dragging the mouse
horizontally.

Figure 19. Shrinking the menu

4 Related work

Many visualization and interaction techniques have been
proposed for browsing and filtering large data. Exam-
ples include Xerox PARC’s Information Visualizer[4] and
TableLens[16], nonlinear magnification systems like Gen-
eralized Fisheye Views[8], Graphical Fisheye Views[17]
and Hyperbolic Visualizer[11], visualization systems us-
ing fractal[10], 2D zooming systems like Pad[15] and
Pad++[3], 2D/3D zooming information retrieval systems
like the WING system[14], and various information visual-
ization systems developed at University of Maryland includ-
ing FilmFinder[2]. Most of the systems support methods for
browsing all of the data, methods for filtering the data, and
methods for showing the focal point while retaining the
context.

Although these techniques are useful in various applica-
tion domains, they tend to focus on particular applications,
or their method of interaction is completely different from
existing GUI tools, as we have shown in Section 1. Beyond
that, most of the techniques are not applicable to visualizing
simple lists containing many items. LensBar is a simple ex-
tension to the conventional slider and scrolling window, and
its appearance and interaction differ only slightly from con-
ventional GUI tools. Nevertheless, LensBar provides many
powerful features for browsing and filtering large item list.

Various extensions to conventional sliders have been pro-
posed. With AlphaSlider[1], users can control the sensitivity
of the slider knob by clicking different portions of the knob.
FineSlider[13] also enables users to move the slider knob
precisely; LensBar takes the same approach.

Furnas[9] argued that an appropriate data structure is
needed to navigate a large data set; as an example, he pro-
posed adding a tree structure for the efficient view traversal
of a large list. LensBar’s assignment of DOI values yields
the same effect, without using an additional tree structure.

LensBar’s method of using the slider background is



somewhat similar to Eick’s “data visualization slider”[6]
in that both try to make better use of screen real estate. Al-
though the data visualization slider is useful for visualizing
a large list, supported user operations differ greatly from
conventional sliders and should be considered as a com-
pletely different visualization tool. Filtering and zooming
are not supported in the data visualization slider. Chimera’s
ValueBars[5] is an approach to displaying additional infor-
mation of the list items adjacent to a conventional slider.
This technique is useful in browsing various attributes of
listed items, and it would be interesting to add similar fea-
tures to LensBar.

5 Conclusion

We have introduced a powerful new visualization and
filtering technique called LensBar. Although LensBar looks
and acts very much like a conventional scroll window with
a slider, its filtering and zooming mechanism makes sophis-
ticated interaction possible. LensBar can be used in wide
range of applications that handle large lists, ranging from
text browsers to hierarchical menus.

References

[1] C. Ahlberg and B. Shneiderman. AlphaSlider: A compact
and rapid selector. In Proceedings of the ACM Conference
on Human Factors in Computing Systems (CHI’94), pages
365–371. Addison-Wesley, April 1994.

[2] C. Ahlberg and B. Shneiderman. Visual information seek-
ing: Tight coupling of dynamic query filters with starfield
displays. In Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI’94), pages 313–317.
Addison-Wesley, April 1994.

[3] B. B. Bederson and J. D. Hollan. Pad++: A zooming graph-
ical interface for exploring alternate interface physics. In
Proceedings of the ACM Symposium on User Interface Soft-
ware and Technology (UIST’94), pages 17–26. ACM Press,
November 1994.

[4] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The Infor-
mation Visualizer, an information workspace. In Proceedings
of the ACM Conference on Human Factors in Computing Sys-
tems (CHI’91), pages 181–188. Addison-Wesley, April 1991.

[5] R. Chimera. Value Bars: An information visualization and
navigation tool for multi-attribute listings. In Proceedings
of the ACM Conference on Human Factors in Computing
Systems (CHI’92), pages 293–294. Addison-Wesley, May
1992.

[6] S. G. Eick. Data visualization sliders. In Proceedings of the
ACM Symposium on User Interface Software and Technology
(UIST’94), pages 119–120. ACM Press, November 1994.

[7] E. Freeman and S. Fertig. Lifestreams: Organizing your
electronic life. In AAAI Fall Symposium: AI Applications
in Knowledge Navigation and Retrieval, Cambridge, MA,
November 1995.

[8] G. W. Furnas. Generalized fisheye views. In Proceedings
of the CHI’86 Conference on Human Factors in Computing
Systems and Graphic Interfaces, pages 16–23, Boston, May
1986. Addison-Wesley.

[9] G. W. Furnas. Effective view navigation. In Proceedings
of the ACM Conference on Human Factors in Computing
Systems (CHI’97), pages 367–374. Addison-Wesley, April
1997.

[10] H. Koike and H. Yoshihara. Fractal approaches for visual-
izing huge hierarchies. In Proceedings of 1993 IEEE Sym-
posium on Visual Languages (VL’93), pages 55–60. IEEE
Computer Society, IEEE Computer Society Press, 1993.

[11] J. Lamping, R. Rao, and P. Pirolli. A focus+context tech-
nique based on hyperbolic geometry for visualizing large hi-
erarchies. In Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI’95). Addison-Wesley,
May 1995.

[12] T. Masui. An efficient text input method for pen-based com-
puters. In Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI’98), pages 328–335.
Addison-Wesley, April 1998.

[13] T. Masui, K. Kashiwagi, and G. R. Borden. Elastic graphical
interfaces for precise data manipulation. In CHI’95 Con-
ference Companion, pages 143–144. Addison-Wesley, May
1995.

[14] T. Masui, M. Minakuchi, G. R. B. IV, and K. Kashiwagi.
Multiple-view approach for smooth information retrieval.
In Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST’95), pages 199–206. ACM
Press, November 1995.

[15] K. Perlin and D. Fox. Pad: An alternative approach to the
computer interface. In ACM SIGGRAPH’93 Conference Pro-
ceedings, pages 57–64, August 1993.

[16] R. Rao and S. K. Card. The Table Lens: Merging graphical
and symbolic representations in an interactive focus + context
visualization for tabular information. In Proceedings of the
ACM Conference on Human Factors in Computing Systems
(CHI’94), pages 318–322. Addison-Wesley, April 1994.

[17] M. Sarkar and M. H. Brown. Graphical fisheye views. Com-
munications of the ACM, 37(12):73–83, December 1994.

[18] B. Shneiderman. Dynamic queries for visual information
seeking. IEEE Software, 11(6):70–77, November 1994.


