
Evolutionary Learning of Graph Layout Constraints
from Examples

Toshiyuki MASUI
Software Research Laboratories

SHARP Corporation
2613-1 Ichinomoto-cho
Tenri, Nara 632, Japan
Tel: +81-7436-5-0987

E-mail: masui@shpcsl.sharp.co.jp

ABSTRACT
We propose a new evolutionary method of extracting user
preferences from examples shown to an automatic graph lay-
out system. Using stochastic methods such as simulated
annealing and genetic algorithms, automatic layout systems
can find a good layout using an evaluation function which
can calculate how good a given layout is. However, the
evaluation function is usually not known beforehand, and it
might vary from user to user. In our system, users show the
system several pairs of good and bad layout examples, and
the system infers the evaluation function from the examples
using genetic programming technique. After the evaluation
function evolves to reflect the preferences of the user, it is
used as a general evaluation function for laying out graphs.
The same technique can be used for a wide range of adaptive
user interface systems.

KEYWORDS: Graphic Object Layout, Graph Layout, Ge-
netic Algorithms, Genetic Programming, Programming by
Example, Adaptive User Interface

INTRODUCTION
One of the goals of user interface research is to create nice-
looking pictures of data structures. All the research on data
visualization and text formatting fit into this category. TEX,
the famous text formatting system, is one of these systems. It
lays out characters, words, paragraphs, and figures in a two-
dimensional space, treating them as boxes and evaluating the
layout using the “badness” value. Like most other visualiza-
tion systems, the layout scheme is coded deep in the system
and users cannot change it easily even when they do not like
it. Although users can change the behavior of TEX slightly by
changing the badness value and other parameters, they cannot
make great changes. In many other layout systems, users can
do almost nothing except accepting the system output as-is.
Complex layout systems are usually hard to build and hard to

Published in:
Proceedings of the ACM Symposium on User Interface Soft-
ware and Technology (UIST’94) (November 1994), ACM
Press, pp. 103–108.

modify.

There are two reasons why layout systems are hard to build.
First, when the data structure is complex, the algorithm to lay
it out under some criteria also becomes complex and develop-
ing such an algorithm is usually difficult. Second, the criteria
themselves are usually not obvious either to the developer
or to the users. There usually exist many conflicting criteria
which cannot be satisfied at the same time.

One solution to the first problem is using stochastic opti-
mization techniques like simulated annealing[10] and ge-
netic algorithms(GA)[6][8]. Using these techniques, if an
evaluation function which can tell the goodness of a layout
is known, near-optimal layout can be computed after itera-
tions of searching in the solution space. These techniques
are widely used in VLSI layout systems, where the evalua-
tion function (usually the size of the chip) is clear and time
constraints are not severe [2][22][23].

To solve the second problem, by-example approaches[3] are
promising. If the system can guess a user’s intentions or
preferences from the examples given by the user, users don’t
have to specify preferences directly to the system. Many
researches have been working in this area. Myers[19] intro-
duced a WYSIWYG editor which can create text formatting
macros from user examples. With his system, for example,
users can make the system infer the formatting macros for sec-
tion titles just by drawing one sample section title. Hudson[9]
showed a graphic layout system which can generalize the lay-
out rules from a small number of examples. Since it is difficult
for the system to infer proper layout rules from a small num-
ber of examples, the system generates many possible rules
and shows the user how they work, and the user selects the
right one from them. Miyashita’s IMAGE system[18] can
infer more complicated rules from a small number of exam-
ples, also interacting with the user. Although these systems
can infer simple layout rules from examples, they consist of
many heuristics and cannot be used for more complex layout
tasks.

We propose taking a completely different approach of using
evolutionary learning technique for constructing the layout
evaluation function from examples. In our system, users
show the system several pairs of good and bad layout ex-

Bad
Layout

Better
Layout

(1) distance between
nodes

(2) arc direction (3) line crossing (4) symmetry (5) angle between
arcs

(6) uniformity

Figure 1: Constraints used in the layout of directed graphs.

amples, and the system infers the evaluation function using
genetic programming technique[12], where a population of
tree-structured evaluation functions “evolve” to a function
which reflects the user’s preferences, under many generations
of Darwinian selection pressure. Once such an evaluation
function is obtained, it is used as the user’s own preference
function to be used with stochastic layout systems such as
[16]. In this paper, we show how this technique works, using
the directed graph layout problem as an example.

DIRECTED GRAPH LAYOUT PROBLEM
Directed Graphs
A directed graph is a graph which consists of a set of nodes
and a set of arcs. An arc is an ordered pair of nodes (n;m),
where n is called the tail and m is called the head. Below is
a directed graph with four nodes and five arcs.

When a directed graph has many nodes and arcs, it becomes
very hard to lay out all of them so that the graph looks nice to
humans. Many constraints can be defined to make the layout
look nice. Some of them are listed in Table 1 and Figure 1.

1. There should be enough space between nodes.
2. The head of an arc should be below the tail.
3. Arc crossings should be avoided.
4. There should be as much symmetry as possible.
5. The angle between two arcs should not be too

small.
6. Nodes should be placed uniformly in the region.

Table 1: Constraints for laying out a directed graph.

Algorithms for Directed Graph Layout
Many graphic layout algorithms for directed graphs have
been proposed[24]. However, finding a layout which gives a

minimal number of line crossing is an NP-hard problem, and
many other problems are, too. So, most of the algorithms
for laying out directed graphs use heuristics. For example,
Eades and Sugiyama[5] introduced the following algorithm.

Step 1 Sort all the nodes according to the arc directions be-
tween nodes.
Step 2 Calculate the minimal number of “layers” from the
top of the graph to the bottom.
Step 3 Assign every node to one of the layers so that there
is no arc from a node in a layer to another node in the same
layer. Nodes should be scattered uniformly.
Step 4 If there is an arc between nonadjacent layers, add
dummy nodes between the head and the tail of the arc, and
put them onto layers between them.
Step 5 Arrange nodes in each layer so that there are as few
line crossings as possible.

Here, finding the best solution in step 2, 3, and 5 is NP-hard,
and several heuristic methods are used in their algorithm.

In this kind of algorithmic solution to graph layout problems,
the evaluation of the layout is coded implicitly in the algo-
rithm and cannot easily be changed without totally modifying
the algorithm.

Using Stochastic Methods for Graph Layout Problems
Using genetic algorithms for the layout of graphs is becom-
ing popular [7] [11] [16] [17] [20]. In these systems, the
evaluation function for the layout is given explicitly, and the
system designer can modify it fairly easily. However, getting
an appropriate evaluation function is not an easy task. For
example, in [16], the formula in Figure 2 is used as the eval-
uation function of the layout. (A small value reflects a good
layout here.)

3000 * (the number of arrows going upward) +
400 * (the number of arcs shorter than a constant C1) +
300 * (the number of arc crossings) +
400 * (the number of angles between arcs which are
smaller than a certain constant C2)

Figure 2: The layout evaluation function used in [16].

B

A

C

P

2ƒ—/3

2ƒ—/3

B

A

C

P

gravity
center

(a) Minimizing AP+BP+CP.

(b) Minimizing AP2+BP2+CP2.

+

x 2

*

y

-

x *

z y

+

x

*

y

-

x

*

z y

2

(x+2)*y (x+(z*y))*y

x-(z*y) x-2

+

x 2

*

y +

x z

*

y

(x+2)*y (x+z)*y

This formula contains many magic numbers. A number of
trial and error loops have been performed before getting these
values. Changing the values and functions slightly will pro-
duce totally different results that are quite unpredictable. We
show this by a simple example. If you want to put a nodeP at
some place within a triangle ABC and useAP +BP +CP

as the evaluation function to minimize,P should be at a point
where 6 APB = 6 BPC = 6 CPA = 2�=3. If you use

AP
2
+BP

2
+CP

2
instead, P should be at the gravity cen-

ter of ABC. (See Figure 3.) In this way, you cannot easily
guess what kind of layout is produced from a given evaluation
function.

Figure 3: Two evaluation functions and resulting lay-
out.

In [16], undesirable layouts can be modified interactively by
theuser and the inappropriateness of the evaluation function is
not a big problem, but in other systems, users can do nothing
but accept the resulting layout. In any case, if users can
show their preference somehow and specify the evaluation
function to the system, stochastic methods become much
more appealing.

DEVELOPING THE LAYOUT EVALUATION FUNCTION
THROUGH GENETIC PROGRAMMING
Genetic Programming
Genetic programming[12] is a technique to make randomly-
generated programs “evolve” to a program which conforms
to the specification given by the user, just like performing
optimization in genetic algorithms. Programs are usually
represented as trees, like the S-expressions of Lisp. The
algorithm starts with many randomly-generated tree-shaped
programs. First, all the programs are checked for differences
from the given specification. If a program works closer to
the specification, it will have a better chance of surviving
to the next iteration, or generation, and if it performs badly,
it will not survive to the next generation. After evaluating
all the programs and selecting what will survive to the next
generation, some pairs of the programs exchange their subtree
(called the crossover operation) like shown in Figure 4, so
that even better program can be generated. Also, some of

Figure 4: Crossover operation.

Figure 5: Mutation operation.

the programs substitute their subtree with other randomly-
generated program tree (called the mutation operation) like
shown in Figure 5. After many generations of these genetic
operations, programs which works close to the specification
will eventually emerge.

Getting User Preferences from Examples Using Genetic
Programming
Using genetic programming technique, we can generate the
layout evaluation function only from the examples given by
the user. We give the genetic programming system pairs of
good and bad layout examples. If a program yields a larger
value for a good layout and a smaller value for a bad layout,
there is a chance that the program can tell how good a layout
is. If it works the same way with many example pairs, the
chance becomes even greater. We use N graphs as examples
and for each graph i 2 1::N , provide good layoutGi and bad
layout Bi. To make an evaluation function f evolve, we use
E(f) =

PN

i=1 p(f; i) as the evaluation function for f , where
p(f; i) = 1 if f(Gi) > f (Bi), and p(f; i) = 0, otherwise. If
f yields a larger value for good layouts than bad layouts for
all the given examples, E(f) takes the value N . With many
examples, chances are we can get a good evaluation function
which truly reflects the user’s preferences.

EMPIRICAL RESULTS
We used only a small number of operators, arguments and
constants to construct the evaluation function, although using
control constructs like condition statements is also possible.

Operators
add, sub, mul, div, abs,
sum, max, min, compare

Arguments
x/y coordinates of node locations
x/y directions of arcs
number of crossing arcs
node distances
minimal angle between arcs connected to a node

good
examples

bad
examples

#1

#2

#8

#21

#22

B1

B2

B8

B21

B22

G1

G2

G8

G21

G22

best average

5

15

20

25

10

performance

generation
50 100

E(f)

The arguments and operators used in the evaluation functions
are listed in Figure 6.

Figure 6: Operators and arguments used in layout
evaluation functions.

At the beginning of the algorithm, evaluation functions are
generated randomly using these operators, arguments and
constants. We provided 22 (= N) example layout pairs,
some of which are shown in Figure 7. For each evaluation
function in the population, we computed f(Gi) and f (Bi)

Figure 7: Good and bad example layout pairs given to
the system.

for each example i and computed E(f) to be used for the
evolution.

The evolution of the best and average performances of the
evaluation functions are shown in Figure 8. The popula-
tion, crossover ratio and mutation ratio used in this example
is 600, 0.8, 0.005, respectively. Using appropriate values
for crossover ratio and mutation ratio is important. In this
example, this combination yield good results.

Figure 8: Best and average performance E(f).

At generation 1 with randomly-generated evaluation func-
tions, the average performance is as low as 7 and the best
performance is 18. As the computation goes on, evalua-
tion functions evolve, and at generation 102, an evaluation
function fb which calculates larger values for good layout
examples for all the input examples (f(Gi) > f(Bi) for all
i 2 1::22) is found. fb, represented like a Lisp program, is
shown in Figure 9.

(ADD (SUB (ADD (MUL (MUL (MUL (ADD (ADD (ADD SUM(diry)
SUM(minangle)) (ADD 44.00 69.00)) (MUL 43.00 MIN(diry)))
5.00) (ADD (ABS MAX(minangle) MIN(dist)) (ADD (ABS 74.00
MIN(dirx)) (ABS 15.00 SUM(locx))))) SUM(minangle)) (MUL 12.00
(CMP (DIV 57.00 MIN(locx)) (CMP 94.00 MIN(intersec))))) (DIV
(ABS (MUL (SUB SUM(locy) 27.00) (CMP 28.00 65.00)) 62.00)
SUM(dirx))) (CMP (ABS (DIV 67.00 SUM(locy)) (CMP (ABS
(ABS 73.00 (CMP 67.00 SUM(dist))) MIN(intersec)) (ABS MIN(dist)
MIN(diry)))) MIN(diry)))

Figure 9: Computed layout evaluation function fb.

Using the function fb as the evaluation function of our GA-
based automatic graph layout system[16], we could get the
layouts shown in Figure 10. Although only the number of
nodes and link information are given to the layout system,
it automatically produces nice layouts just using fb as the
evaluation function. This means that although fb looks quite
complex, it reflects the preferences of the user shown implic-
itly in the examples. For example, most of the arcs in Figure
10 are going downward, reflecting the fact that most arcs in
the good examples in Figure 7 are going downward.

DISCUSSIONS
The Path to Really Adaptive User Interface
As the user provides more examples, the performance of
our system improves. This means that for creating adap-
tive user interfaces [1] [21], evolutionary approaches seem
quite promising. Adaptive user interface systems have been

(a)
(b)

(c)
(d)

Figure 10: Layout results using fb as the evaluation
function.

considered to be difficult to construct, and most of the sys-
tems proposed so far were based on rigid application knowl-
edge with a small amout of adaptivity, controlled by the user
models which are also rigid. However, recent research in
machine learning and artificial life[14] suggests that various
techniques can be applied to make interface systems learn or
evolve to fit to each user’s needs. For example, Maes pro-
poses “learning interface agents” [13] [15] which gradually
learn to assist the individual user by observing the user’s ac-
tions, getting user feedback, and explicit training, based on
memory-based learning approach. If a system can not only
learn, but evolve to a more powerful learning system, it can
be a very powerful framework for adaptive interfaces.

Is Genetic Programming Really Effective?
Some people doubt if genetic programming is nothing but a
random search. In our example shown in the last section, we
reached the desired evaluation function after 102 generations
with a population size of 600. This means we found the eval-
uation function after about 60,000 trials. On the other hand,
if we generate the evaluation function totally randomly until
we find a function f where E(f) = 22, we have to perform
222

' 4,000,000 trials on the average before finding it. So at
least for this layout problem, genetic programming technique
is actually working much better than simple random searches.

Interactive Technique for Showing Examples
Although showing examples is easier than writing an entire
layout program or layout rules, providing many examples is
still a heavy burden to users. Some by-example systems in-
cluding Hudson’s system[9] and IMAGE[18] try to reduce
the number of examples to be shown to the system by inter-
actively telling the system the right direction of the inference.
Similar ideas can also be applied to our system. After a lay-

out evaluation function is computed from a small number of
examples, we can use it for the layout of another example,
check the result, and if the result is not good enough, use it
as another bad layout example and compute the evaluation
function again with the accompanying better layout example.
In fact, B21 in Figure 7 is the output of an automatic layout
system using the evaluation function computed by examples
#1 to #20, and the B22 is created from examples #1 to #21.

Another possibility is to make the system create examples
automatically like Hudson’s system[9], instead of receiving
examples from the users. For example, if the user iteratively
selects the best layout from the examples generated by the
system, the system might eventually learn this user’s pref-
erences. This is a well-known technique in creating artistic
pictures and virtual insects1 using evolutionary techniques.
We did not take this approach because selecting the best
layout from many random-looking layouts seems much more
difficult than comparing only two layouts and deciding which
is better.

Preventing Over-Adaptation and Complexity
The fb shown in Figure 9 is quite complex and involves
many meaningless elements. This is because we did not take
into account the simpleness of the evaluation function when
making them evolve. This problem can be solved by adding
the simpleness factor into E(f), although it takes a longer
time to get a simpler evaluation function which does the same
thing as a complex one.

Processing Speed
The biggest problem with our system is that it takes a very
long time (several minutes in the example above) to get a lay-
out evaluation function in the current implementation using
Objective-C running on a 68040 NeXTstation. However, just
like constraint solvers are widely used today while they were
too slow to be used for interaction ten years ago, we believe
that evolutionary techniques will become one of the main
techniques for adaptive interfaces, since they are so simple,
robust and useful.

CONCLUSIONS
Although we are still in the process of trying and evaluating
various evolutionary techniques including genetic program-
ming, we believe that it is a promising approach to adaptive
user interfaces and other by-example systems. As the next
step, we are preparing to apply this technique to other appli-
cation areas such as information retrieval systems.

REFERENCES
1. Browne, D., Totterdell, P., and Norman, M., Eds. Adap-

tive User Interfaces. Academic Press, London, 1990.

2. Cohoon, J. P., and Paris, W. D. Genetic placement. In
Proceedings of the IEEE International Conference on
Computer-Aided Design (1986), pp. 422–425.

1The BioMorph system introduced in [4] is an evolutionary shape-
breeding system under the user’s selection pressure. It shows the user
nine variations of insect-like object generated from an encoded string, and
the user can iteratively select one of the variations to make the string evolve
and produce his favorite shape.

3. Cypher, A., Ed. Watch What I Do – Programming
by Demonstration. The MIT Press, Cambridge, MA
02142, 1993.

4. Dawkins, R. The Blind Watchmaker. W. W. Norton &
Company, 1985.

5. Eades, P., and Sugiyama, K. How to draw a directed
graph. Journal of Information Processing 13, 4 (1990),
424–437.

6. Goldberg, D. E. Genetic Algorithm in Search, Optimiza-
tion and Machine Learning. Addison-Wesley, Reading,
MA, 1989.

7. Groves, L. J., Michalewicz, Z., Elia, P. V., and Janikow,
C. Z. Genetic algorithms for drawing directed graphs.
In Methodologies for Intelligent Systems 5, Proceedings
of the Fifth International Symposium (October 1990),
Z. W. Ras, M. Zemankova, and M. L. Emrich, Eds.,
North-Holland, pp. 268–276.

8. Holland, J. H. Adaptation in Natural and Artificial
Systems. University of Michigan Press, 1975.

9. Hudson, S. E., and Hsi, C.-N. A synergistic ap-
proach to specifying simple number independent lay-
outs by example. In Proceedingsof ACM INTERCHI’93
Conference on Human Factors in Computing Systems
(CHI’93) (April 1993), Addison-Wesley, pp. 285–292.

10. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Opti-
mization by simulated annealing. Science, 220 (1983),
671–680.

11. Kosak, C., Marks, J., and Shieber, S. A parallel genetic
algorithm for network-diagram layout. In Proceedings
of the Fourth International Conference on Genetic Al-
gorithms (UCSD, California, August 1991), Morgan
Kaufmann Publishers, pp. 458–465.

12. Koza, J. R. Genetic Programming. The MIT Press,
Cambridge, MA, 1992.

13. Kozierok, R., and Maes, P. A learning interface agent
for scheduling meetings. In Proceedings of the 1993
International Workshop on Intelligent User Interfaces
(January 1993), ACM Press, pp. 81–88.

14. Langton, C. G., Taylor, C., Farmer, J. D., and Ras-
mussen, S., Eds. Artificial Life II, vol. X of Santa Fe
Institute Studies in the Sciences of Complexity. Addison-
Wesley, 1991.

15. Maes, P. Learning interface agents. In Proceedings of
the 1994 Friend21 International Symposium on Next
Generation Human Interface (February 1994).

16. Masui, T. Graphic object layout with interactive genetic
algorithms. In Proceedings of the 1992 IEEE Workshop
on Visual Languages (September 1992), IEEE Com-
puter Society Press, pp. 74–80.

17. Michalewicz, Z. Genetic Algorithms + Data Structures
= Evolution Programs. Springer-Verlag, 1992.

18. Miyashita, K., Matsuoka, S., Takahashi, S., and
Yonezawa, A. Interactive generation of graphical user
interfaces by multiple visual examples. In Proceedings
of the ACM Symposium on User Interface Software and
Technology (UIST ’94) (November 1994), ACM Press.

19. Myers, B. A. Text formatting by demonstration. In
Proceedings of the ACM Conference on Human Factors
in Computing Systems (CHI’91) (April 1991), Addison-
Wesley, pp. 251–256.

20. Pazel, D. P. A graphical interface for evaluating a ge-
netic algorithm for graph layout. Tech. Rep. RC14348,
IBM Research Division, T.J. Watson Research Center,
1989.

21. Schneider-Hufschmidt, M., Ed. Adaptive User Inter-
face. North-Holland, Amsterdam, 1993.

22. Shahookar, K., and Mazumder, P. A genetic approach to
standard cell placement using meta-genetic parameter
optimization. IEEE Transaction on Computer-Aided
Design 9, 5 (May 1990), 500–511.

23. Shahookar, K., and Mazumder, P. VLSI cell placement
techniques. ACM Computing Surveys 23, 2 (June 1991),
143–220.

24. Tamassia, R., and Eades, P. Algorithms for drawing
graphs : an annotated bibliography. Tech. Rep. CS-89-
09, Brown University, Department of Computer Sci-
ence, October 1989.

