
Graphic Object Layout with Interactive Genetic Algorithms

Toshiyuki MASUI
SHARP Corporation

Information System R&D Center
Tenri, Nara 630, Japan

Abstract

Automatic graphic object layout methods have long been
studied in many application areas in which graphic objects
should be laid out to satisfy the constraints specific to each
application. In those areas, carefully designed layout al-
gorithms should be used to satisfy each application’s con-
straints. However, those algorithms tend to be complicated
and not reusable for other applications. Moreover, it is dif-
ficult to add each user’s preferences to the layout scheme
of the algorithm. To overcome these difficulties, we devel-
oped a general-purpose interactive graphic layout system
GALAPAGOS based on genetic algorithms. GALAPAGOS
is general-purpose because graphic objects are laid out not
by specifying how to lay them out, but just by specifying the
preferences for the layout. GALAPAGOS can not only lay
out complicated graphs automatically, but also allow users
to modify the constraints at run time so that users can tell
the system their own preferences.

1 Introduction

How to lay out many graphic objects efficiently or attrac-
tively into a limited two-dimensional space is an important
issue in applications like text formatters, data visualizers,
LSI block layout tools, and many others. Since graphic lay-
out is also important in interactive environments, graphic
constraint solving mechanisms are becoming popular in
user interface design tools [11] [12] [17]. A constraint
like “the left edge of rectangle A should have the same X-
coordinateas rectangleB” always makes the two rectangles
move together, and users do not have to move rectangle A
when they moved rectangle B. This kind of constraint
solving system greatly helps users arrange graphic objects
interactively.

The difficulty of solving the constraints depends on the
nature of the constraints. Linear constraints like the one
shown above can be solved quickly enough to be used in
interactive environments, but complicated constraints for
neatly laying out many graphic objects are hard to solve,

and there is not always a procedure to get the optimal
solution. Heuristics have long been used for these kind
of problems where getting the optimal solution are almost
impossible. However, it is usually difficult to find good
heuristics, and it can never be general-purpose and you
may have to use completely different set of heuristics for
solving only slightly different constraints.

Recently, stochastic algorithms like Simulated Anneal-
ing [8] and Genetic Algorithms (GA) [3] [6] are becoming
widely used for graphic object layout problems. They do
not try to solve the constraints directly, but they modify the
candidate solutions with random values, and make them
approach the optimal solution through many trials. Using
these algorithms, you should just specify what kind of con-
straints you want to solve, and good solutions are calculated
automatically.

Although stochastic methods are powerful and able to
solve complicated constraints, they still have limitations. It
is sometimes difficult for the users to get preferred results,
since users cannot specify how to lay out objects. Also,
some constraints are inherently hard to specify. It would
not be easy to specify constraints which can make all kinds
of graphs look neat.

To solve these problems, we developed a GA-based in-
teractive graphic layout system GALAPAGOS (Genetic
ALgorithm And Presentation-Assisted Graphic Object lay-
out System.) GALAPAGOS not only works as an auto-
matic graphic layout system, but allows users to modify
the constraints at run time so that they can tell the system
their preferences. When a user notices that the system is
going to have a solution which he doesn’t like, he can tell
so to the system at any moment by adding or modifying
the constraints currently used for the calculation, and get
preferred result.

2 Genetic algorithms for graphic layout

In this section, we briefly introduce how genetic algo-
rithms work, and show how they can be applied to graphic
layout problems.
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2.1 Genetic algorithms overview

Genetic algorithms are search algorithms based on the
mechanics of natural selection and natural genetics. The
solution domain of a problem is represented as a bit string
(or a gene.) Starting from a randomly initialized set of
genes, those genes evolve to better genes which are closer
to the solutions of the problem by iterations of modifica-
tions to the genes. Each iteration is called a generation.
The modification in a generation is performed like this.
First, the “performances” of all of the genes in the set are
calculated by a gene evaluation function. Second, genes
with good performances are chosen as candidate genes for
the next generation. Finally, genetic operations are per-
formed to some portion of the selected genes so that better
genes are produced. Genetic operations usually consist of
crossover and mutation, simulating real genes. Crossover
is performed by selecting two genes, cutting them at two
randomly selected points, and exchanging the portion of
the genes between the cut points. (See Figure 1.) Mutation
is performed by flipping the value of a bit in a gene in some
small fixed rate.

The whole procedure simulates evolution through natu-
ral selection. Although each gene has no knowledge about
the problem to solve, good genes survive to the next gen-
eration and bad genes will die out. Two genes which have
good feature at different portions of the genes will pro-
duce a better gene through crossover. Even better genes
may be produced by mutation, and eventually dominate the
population.

In spite of their simplicity, genetic algorithms are pow-
erful and robust. Genetic algorithms are drawing many
attentions recently and are becoming used more and more
in various problem areas where extensive search is im-
possible or no good algorithm can be found to solve the
problems. Recent application areas are listed in [3].

Many modifications to the algorithm have been proposed
to improve the performance. Also, there are many parame-
ters used in the algorithm which can change the behavior of
the algorithm to a great extent. Some of them are the pop-

Figure 1: Genetic operations - crossover and mu-
tation

Figure 2: Tree nodes layout: best layouts at some
of the generations

ulation (number of genes,) mutation rate, and crossover
rate (ratio of genes used for crossover.) The evaluation
function also plays an important roll in the calculation
and determines the whole performance of the algorithm.
Proper combination of parameters and the evaluation func-
tion should be carefully chosen to get good performances.

2.2 A simple example of using genetic algorithms
for graphic layout

Figure 2 shows how genetic algorithms can be used to lay
out a tree structure. The X-axis of the performance graph
shown at the left-center corresponds to the generation, and
the Y -axis shows the average performance of the genes
used in the calculation 1.

Three criteria are used for this layout. They are 1) nodes
should not overlap, 2) children nodes should be correctly
ordered, and 3) a parent node should be at the center of
its children nodes. These criteria are evaluated through an
evaluation function shown below. In Figure 2, nodes with
lighter color at the left show the correct node ordering.

1This is a typical shape of performance improvement through time.



int  evaluategene( char *gene)
{
    int  val = 0;
    Decode the node informations from gene ;
    for ( all nodes) {
        if ( the node has overlapped portion
           with its right node){
            val += ( overlapping width) * 100;
        }
    }
    for ( all nodes){
        val += sqr( parent position -
                   center position of its children);
    }
    /*  other criteria */
    return  val;
}

In this example, even though we did not specify how to
lay out the nodes to satisfy the criteria, the final solution
satisfies all those criteria shown above and looks balanced.
Another criterion like 4) spaces between nodes should have
the same width can easily added to improve the appearance,
just by adding a few more lines to evaluategene().

Laying out tree nodes under the criteria like the ones
shown above is not a hard problem, and many fast algo-
rithms have been proposed. However, using genetic al-
gorithms still has advantages, since they are robust to the
change of the criteria.

3 GALAPAGOS overview

GALAPAGOS is a GA-based graphic layout system
which allows interactive runtime modification of con-
straints defined among graphic objects. With a input data
representation and constraints defined among the compo-
nents, GALAPAGOS tries to lay out those components in
a rectangle using genetic algorithms and displays the best
solution. After looking at the displayed solution, users of
GALAPAGOS can edit it with a graphic editor to modify
or add new constraints. For example, when a user noticed
that an object is placed in a wrong position, he can drag it
to the right position and make it immovable. When a user
noticed that two objects should have the sameY -coordinate
to make the whole structure look neat, he can specify that
one’s Y -coordinate is the same as the Y -coordinate of the
other. Also, he can modify the various parameters used in
genetic algorithms. For example, he can modify the mu-
tation rate at any time during the computation to get better
results.

GALAPAGOS is based on the same algorithm as the
GENESIS system[4]. The main loop of GALAPAGOS is
shown below:

initialize();
for(gen=0; gen < maxgen; gen++){

check_event();
selectgene();

mutate();
crossover();
evaluate();
measure();
display();

}

selectgene() selects genes from the population
based on Baker’s method[1]. With this method, the worst
performance is defined, and genes whose performance is
worse than that value will not be used in the next generation.
Genes are selected so that the population of the gene after
selectgene() is proportional to the difference between
the worst value and the performance of the gene. The worst
value is updated at each generation.

The only difference between the algorithms of GALA-
PAGOS and GENESIS is check_event(), where users
can tell GALAPAGOS to stop and modify current con-
straints used in evaluategene(). Users can either
continue the loop or start the loop again after the change.

After making modifications to the layout and constraints,
the edited layout data is copied back to one third of the pop-
ulation so that the edited data will prevail in the population.

4 Using GALAPAGOS for directed graph
layout

4.1 Directed graph layout problem

A directed graph is a graph which consists of a set of
nodes N and a set of arcs E. An arc is an ordered pair of
nodes (n;m), where n is called the tail and m is called the
head. Below is a directed graph with four nodes and five
arcs.

When a directed graph has many nodes and arcs, it
becomes very hard to lay out all of them so that the graph
look nice to humans. Many constraints can be defined to
make the layout look nice. Some of them are listed in
Figure 3.

Many graphic layout algorithms have been proposed to
solve these or other constraints[16]. However, finding a
layout which gives minimal number of line crossing is an
NP-hard problem, and many other problems are, too. So,
most of the algorithms for laying out directed graphs are
using some heuristics.

4.2 Directed graph layout by GALAPAGOS

GALAPAGOS can not only automatically lay out a di-
rected graph nicely, but also allow the user to edit the result
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Figure 3: Constraints used in the layout of directed graphs

Figure 4: Inversion and block move

and add or modify the constraints so that the user can tell
the system his preferences.

4.2.1 Modifications to standard genetic algorithms

Slight modifications are made to standard genetic al-
gorithms shown before. First, “integer encoding” is used
instead of bit string encoding. The positions of all the
nodes are represented as an integer array, and the array is
treated as a gene. Crossover is performed by exchanging

a portion of two arrays. Mutation is performed by giving
a random value to an array element. Second, inversion
is used as another genetic operator. Inversion means ex-
changing the positions of two nodes. Figure 4(a) shows
how inversion works for the layout of a directed graph.
Block move shown in Figure 4(b) can be another candidate
for a new GA operator. However, it does not work as good
as inversion, because it does not usually improve the lay-
out unless proper set of nodes are chosen as the block like
shown in Figure 4(c). For this reason, it is not used as a
genetic operator in GALAPAGOS.

4.2.2 Constraints used in the layout

Constraints shown below are used as default constraints.

1. The head of an arc should be below the tail.
2. The distance between every pair of nodes should be

bigger than a constant value.
3. The number of arc crossings should be as small as

possible.
4. The angle between two arcs should be bigger than a

constant value.

Constant weight values are defined to each constraint,
and for each violation to the constraints, the value is added
to the return value of the evaluation function. In the ex-
amples shown below, (3000, 400, 300, 400) is used as the
weight values. For example, 300 is added to the return
value of the evaluation function for each line crossing.

In addition to them, constraints shown below can be
added by the user interactively.

5. A node is positioned at a place specified by the user.
6. Two specified nodes have the same X-coordinate.
7. Two specified nodes have the same Y -coordinate.
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Figure 5: Sample layout session

4.2.3 Examples

In our current implementation, the program which exe-
cutes genetic algorithms (called GA Visualizer) can display
the best layout, but cannot get user inputs. So a com-
mercial graphic editor is used for the modifications of the
constraints. The initial data is given by the graphic editor
or some other programs to GA Visualizer. GA Visualizer
then performs genetic algorithms and displays the best re-
sult at each generation. If the user wants to modify the
constraints, he edits the result using the graphic editor, and
gives them back to GA Visualizer.

Figure 5 shows a sample layout session using the GALA-
PAGOS system. First, link information of a directed graph
is given to the system. The system starts executing genetic
algorithms, and displays the best solution at each genera-
tion. Figure 5(a) is the first solution found by the system.
After many generations, much better solution (b) is found.
At this point, the user notices that the graph looks better
if the three nodes at the top and the two nodes at the bot-
tom are aligned with the same Y -coordinate. So he puts
three constraints to the graph shown by big arrows in (c),
and continues calculation. New constraints are shown as
dotted lines. He finally gets the final layout shown in (d).

Figure 6 shows another example. Here, the user edits
the initial solution (a), and make three nodes immovable
so that the numbers on the nodes are ordered. Immovable
nodes are displayed with shadows (b). One more constraint
is added so that the two topmost nodes are aligned. After
these modifications, the final layout (c) is computed.

In both of the examples shown above, the same popu-
lation (= 200,) crossover rate (= 0:8,) and mutation rate
(= 0:006) were used.

Figure 6: Manual positioning of nodes

5 Discussions

5.1 Advantages of using GALAPAGOS

Just as we have shown in the previous section, GALA-
PAGOS can not only lay out a complicated directed graph
automatically, but also allow users to edit the result and
modify the constraints to get preferred results. This is a
very promising approach toward computer-aided graphic
layout system. Here are the advantages of using GALA-
PAGOS for graphic object layout problems.



� No need for special ad-hoc layout algorithms

You don’t have to devise a complicated algorithm to
lay out objects. The only thing you have to specify
is an evaluation function which corresponds to the
criteria you choose. Even when the criteria should
be changed, you don’t have to change the algorithm
at all, and all you have to modify is the evaluation
function.

� Strength of constraints

If you have several criteria which are not of equal
importance, you can specify the importance of each
criterion by assigning a different value to each cri-
terion. For example, when laying out tree nodes,
node overlapping is considered to be worse than an
unbalanced node. To represent the difference of im-
portance, you can add a big value to the return value
of the evaluation function when there are overlap-
ping nodes, while you add a small value when you
find an unbalanced subtree.

� Robustness

Genetic algorithms always give an answer which
they think is closest to the solution at the moment.
They give an answer even when there’s no optimal
solution at all to the constraints given to them. Al-
though you cannot always expect the best solution,
you have good chance of getting a good solution from
the algorithm.

� Global layout considerations

Most of the layout algorithms use only local informa-
tion to determine where to lay out an object, because
global considerations will lead to a combinatorial
explosion in computation time. On the other hand,
genetic algorithms can find a globally good solution
from multiple genes which represent locally good
solutions, without using excessive computation time.
For this reason, they can be used for inherently tough,
NP-hard layout problems.

� Interactive changes of constraints and layouts

Constraints can be modified interactively during the
calculation of graphic layout. That is, if you don’t
like the results computed from the algorithms, you
can add or modify the constraints so that other results
are produced. You can also lay out some parts of the
layout fully by manual, without letting the system lay
out automatically. This means that you can choose
any point between fully automatic and fully manual
layout.

The first four advantages came from the power of GA,
and the last one came from GA’s interactive extension in-
troduced in GALAPAGOS.

5.2 Using different GA

Although GALAPAGOS is using the same algorithm
as the GENESIS system, the modification is minimal and
any other GA algorithm can be used for GALAPAGOS.
If an advanced GA algorithm which shows good perfor-
mance in graphic layout problems is found, it can easily be
incorporated in the new version of GALAPAGOS.

5.3 Selection of the evaluation function

The evaluation function changes the behavior of genetic
algorithms dramatically. Sometimes you cannot get a ex-
pected result because of the improper evaluation function.
This may seem to be a problem, but it can also be consid-
ered to be a strong point of the algorithm because of the
following reasons.

� Users can sometimes get unexpected but desirable
layout.

� Users can find the relation between the constraints
and the result layout. From the relation, users can
analyze what constraints make the layout look good,
from another point of view.

6 Related works and future works

Genetic algorithms are becoming popular in the area of
VLSI layout systems [2] [14]. Some VLSI layout systems
are using the combination of genetic algorithms and sim-
ulated annealing [7] [9]. Using genetic algorithms for the
layout of a directed graph is reported in [5] [13], but the lay-
out computed by those systems are not very good. Kosak
et al.[10] used genetic algorithms running on The Connec-
tion Machine for the layout of a network-diagram, a variant
of a directed graph. They made some modifications to the
standard genetic algorithms, just like the ones shown in this
paper, to perform efficient computation. They used “per-
ceptual organization” for the layout of a network-diagram,
which is a structure which gives users better understandings
about the network.

Genetic algorithm work well for all those systems shown
above as an automatic layout algorithm. However, these
systems shown above do not allow users to modify the
evaluation function at run time, and users cannot tell their
preference to the system during computation.

Takahashi et al.[15] created an automatic graphic lay-
out system called TRIP2, where users can edit the output
structure and tell the system that the structure is modi-
fied. TRIP2 is novel because not only a data structure is
nicely visualized by the system, but also user feedback to



the output can modify the original data structure, and bidi-
rectional communication between the user and the layout
system is possible. However, the automatic layout system
used in TRIP2 is based on a rather simple constraint solver,
and complicated constraints like those shown in this paper
cannot be solved. Moreover, the layout procedure is fully
automatic and users cannot tell the system their preferences
during the layout procedure.

Our future work includes putting together all those nice
features proposed in this paper and others, and construct
a general-purpose graphic layout system using genetic al-
gorithms. In the current GALAPAGOS system, users can
specify only three constraints in addition to the default
constraints. We are planning to use a simple interpreter
language to allow users to write any kind of arithmetic
expressions for the specification of constraints.

7 Conclusions

Genetic algorithms are simple, robust and powerful al-
gorithms for laying out graphic objects. Although genetic
algorithms are not very fast and not always reliable, they
can be used in many graphic layout applications where de-
terministic layout algorithms are not easily created. They
can also allow the users to modify the evaluation func-
tion at run time to change the constraints for the layout
interactively. We have developed a graphic layout sys-
tem GALAPAGOS and proved the usefulness of genetic
algorithms for graphic layout problems.
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