
LensBar – Visualization for Browsing and Filtering Large Lists of
Data

Toshiyuki Masui1

Sony Computer Science Laboratories Inc.

Abstract

We propose a simple and powerful graphical interface tool called the
LensBar, for filtering and visualizing a large list of data. Browsing
and querying are the most important techniques for information
retrieval, and LensBar integrates the two techniques into a simple-
looking scroll window with a slider. While it looks familiar to
users of conventional graphical interface tools, its filtering and
zooming mechanism offers sophisticated handling of large lists of
text-oriented data.
CR Categories and Subject Descriptors: I.3.6 [Computer Graph-
ics]: Methodology and Techniques - Interation Techniques; H.3.3
[Information Storage and Retrieval]: Information Search and Re-
trieval - Information Filtering; H.5.2 [Information Interfaces and
Presentation]: User Interfaces - Graphical User Interfaces.
Additional Keywords: zooming interface, approximate string
matching, slider, LensBar

1 INTRODUCTION

Recently, various visualization techniques for browsing large data
have been proposed. Also, a number of information retrieval tech-
niques for filtering huge data using query keywords are also pro-
posed. In some systems, visualization and filtering are integrated
and users can filter and browse the data at the same time.

Although the combination of browsing and querying is much
more powerful than using each of the techniques separately, most of
the existing systems suffer from the following shortcomings. First,
most of the visualization techniques are far from general-purpose,
and they are applicable only to special application domains. Second,
special interaction techniques are usually required to effectively
filter data and control the visualization result. For example, using
the FilmFinder system[2], users can get the information of movie
titles by providing information such as the names of actors and the
year of the production, and they can control the visualized query
result shown as a scattered plot on a 2D space. However, the filtering
and visualization method is only valid to this particular application,
and the whole design of the visualization and interaction techniques
should be modified for different applications.

It is natural that handling special data requires special visual-
ization and interaction techniques, but it seems strange that even

13-14-13 Higashi-Gotanda, Shinagawa, Tokyo 141, Japan. masui@csl.sony.co.jp

for handling a common data structure like a text or a simple list
of data, not many effective techniques for query and visualization
have been proposed and used widely.

We propose a simple and powerful interface tool called the
LensBar for filtering and visualizing a large list of data. LensBar
works as an extension to a conventional scroll window or a substitute
for a hierarchical menu, and it can be applicable to wide range of
applications where these tools are currently used.

2 VISUALIZATION AND INTERACTION TECH-
NIQUES

Our technique is based on the following strategies.

� Browsing the whole list using a precisely-controllable slider
and a scroll window

� Controlling the amount of data to be displayed by keyword
filtering and zooming

� Visualizing the distribution of filtered data in the background
of the slider

We will describe the techniques in more detail in the following
sections.

Integrating browsing and querying To browse a large list,
we use a slider (scroll bar) with an accompanied scroll window,
which is a very common combination in current graphical user in-
terface systems. In addition to them, an extra text input area is
attached for filtering the list of items, and only those entries that
match the specified pattern are selected and displayed in the scroll
window. At the same time, corresponding positions in the slider
background are highlighted to show the locations of entries which
match the pattern. For example, if the first entry in the list match the
pattern, the top line of the slider background is highlighted. When
no pattern is specified, all the lines in the slider background are high-
lighted, yielding a highlighted rectangle in the slider background.
When a user tries to move the slider knob, it only moves on the
highlighted portion. The highlighted region within the slider knob
always corresponds to the displayed items in the scroll window.

When the user modifies the query pattern, string matching is
immediately performed to all the entries in the list, and the display
of the slider background and the scroll window also change im-
mediately. With this dynamic query[18] feature, users can easily
find the relation between query pattern and the distribution of data
items.



Figure 1: Initial display of the dictionary application

Dynamic approximate string matching When no entry in
the list matches the specified pattern, dynamic approximate string
matching[12] is performed automatically, and entries which are
closest to the pattern are treated as being matched. This is usually
much more convenient than giving no query result when no match-
ing is found, and especially useful when users are not very sure of
the spelling: e.g. searching for a word in a dictionary of a foreign
language.

Zooming interface Users can control the amount of informa-
tion to be displayed by zooming operations. Before zooming out,
all the entries that match the query can be displayed by moving
the slider knob, just like a conventional scrolling window. Using
LensBar, a user can control the amount of items to be displayed by
changing the zooming level. A DOI (degree of interest) value is
dynamically assigned to each entry automatically, and only those
entries whose DOI value is bigger than the zooming level are se-
lected to be displayed. For example, when the zooming level is set
to a large value, items with small DOI values disappear to produce
a zooming out effect.

Zooming interface is essential in 3D interaction systems, and it
is also proved to be effective in 2D GUI[3, 15]. Although zooming
interfaces for handling a (1D) large list is not as widely used as
handling 3D/2D objects, it is convenient to control the amount of
displayed data smoothly.

Precise control of the slider Using a conventional slider, pre-
cise scrolling of a very large data is difficult, since the resolution of
the display and the pointing device is low. To enable precise con-
trol, conventional scroll bars sometimes have up and down arrows
around the knob or at the top and bottom of the bar. Other tech-
niques for fine control of the slider have also been proposed[1, 13],
and we adopted the technique described in [13]. When a user clicks
the mouse on the knob of the slider, he can move the knob directly to
any place on the bar, just like a conventional slider. When the user
clicks the mouse on the scroll bar other than on the knob, the knob
will move gradually to the mouse cursor, in a speed proportional to
the distance between the mouse position and the knob, and users
can control the moving speed of the knob easily.

3 EXAMPLES

It would be best to use examples to show how each of the techniques
described in the previous section actually works. Since LensBar is
a general-purpose tool for visualizing and filtering a large list, we
introduce various examples to show how the technique is applicable
to different applications.

3.1 Example 1: Searching Words In a Dictio-
nary

First, we show the behavior of LensBar using a simple dictionary
application.

Figure 1 shows the initial display of a dictionary application
using LensBar. In the left side, a slider with a transparent knob
is displayed. In the background of the slider area, a highlighted
rectangle is displayed, showing that all the entries in the dictionary
are currently selected for display. In Figure 1, only ten words which
correspond to the position of the knob are shown in the scrollable
area at the right. The highlighted line at the center of the knob
shows the position and the size of the ten words in the whole list.

The dictionary contains more than 30,000 words. The user can
drag the knob to any position of the dictionary, and he can click
other place in the slider to move the knob precisely (Figure 2).
He can also drag the scroll window by clicking the mouse in the
window and dragging it vertically.

Figure 2: Scrolling the window

DOI value Entry
... ...
1 granule
2 grape
1 grapefruit
3 grapevine
1 graph
2 graphic
1 graphically

20 graphics
1 graphite
2 graph paper
... ...

Table 1: Assignment of DOI values

In this dictionary application, DOI value is assigned to each line,
as shown in Table 1. Since “graphics” is currently selected, it has
the largest DOI value. When the user clicks the mouse on a word and
drags it to the left, the zooming level changes accordingly, and the
number of words to be displayed are gradually reduced and wider
range of words appear in the scroll window. For example, when
the zooming level is 2.0, every two word around “graphics” is
displayed. In Figure 3, every 256 word in the dictionary is displayed
(zooming level is around 9), and in Figure 4, every 4096 word is
displayed. Hidden entries are shown as gray lines between words.
At the same time, the background of the slider changes to show the
distribution of the selected words. As the range of the displayed



words becomes larger, the slider knob also becomes larger to cover
the area.

Figure 3: Zooming out to show every 256 word

Figure 4: Zooming out more to show every 4096 word

The zooming level is determined by the horizontal movement
of the mouse. Since the scrolling window follows the vertical
movement of the mouse, the mouse cursor is always on the line
of the same word (“graphics”, in this case) during the zooming
operation, and when the user moves the mouse cursor back to the
previous position, the system goes exactly back to the previous
state. This continuous and reversible characteristic of zooming
interface[14] helps users recover from erroneous operations easily.

When the user enters a pattern string, dynamic approximate
pattern matching is performed and only those entries that match the
pattern are selected for display. Figure 5 shows the display after the

Figure 5: Filtering by “g”

user specified “g” as the pattern string. The whole list is filtered and
only those words which begin with “g” are selected and displayed.

A space character (“ ”) is used as a wildcard character, just
like the pattern “.*” used in regular expressions. So when “ q”
is specified as the pattern, all the words which include the letter
“q” are selected (Figure 6). Since those words are scattered in the
dictionary, the highlighted area in the slider looks like a comb.

Figure 6: Filtering by “ q”

Let’s consider finding a word with difficult spelling like “Pithecanthrop
Figure 7 shows the display of LensBar after a user typed a wrong
spelling “pite”, showing that only two words in the dictionary
begins with “pite”.

Figure 7: Typing “pite”

At this moment, the user can tell that “pite...” is not the right
spelling for “Pithecantropus”, but he can continue giving
more letters as the pattern.

Figure 8: Typing “pitec”



Figure 9: “Pithecanthropus” found from “piteca”

When the user types “c” next, the string matcher notices that
there is no word in the dictionary that begin with “pitec”, and
all the words that match the pattern “pitec” with one error are
searched and displayed. Many words including “pitch” and
“piteous” match “pitec” with one error, and they are dis-
played in the scroll window. The text input area becomes darker,
showing that no exact matching was found. When the user types
“a” next, words like “pitch” disappear because they do not match
“piteca” with one error, and only “Pithecanthropus” be-
comes visible. In this way, by dynamically changing the parame-
ter of the approximate string matching algorithm and showing the
words closest to the pattern, users can always see the candidates
closest to the given pattern and have better chance of finding the
desired information.

When the user is not sure of the spelling, he can explicitly use
wildcard characters instead of specifying uncertain letters. Figure
10 shows the situation where a user tries to find “Mediterranean”,
and specifies only small number of characters that he thinks must
exist in that word. Since there are only five words in the dictionary
which have “m”, “d”, “t”, “r” and “n” in its spelling, the user can
easily find the desired word in the list.

Figure 11: File/Message Browser

Figure 10: Typing “m d t r n”

3.2 Example 2: File/Message Browser
Handling huge number of files and e-mail messages is not a trivial
task, especially when a user sends and receives a number of e-
mail messages every day. LensBar is very useful for file/message
browsers, since integration of browsing and querying helps the user
finding desired document or message easily.

In the file/message browser shown in Figure 11, two LensBars
are used. The one at the top shows the titles of files and messages
listed in chronological order. The LensBar at the bottom shows the
contents of the selected message. It does not have a text input area
for filtering, but it is used as a substitute for conventional scrollable
text window (with a scrollbar with uniform background.) When
the user enters a keyword, messages which contain the keyword are
selected, and the content of the selected message is shown in the
scroll window at the bottom.

Figure 12: Filtering messages by “uist”

When a user enters a pattern “uist”, messages and files related
to the UIST conference are selected and listed. Since the messages
and files are listed in chronological order, he can see his activity
related to the keyword. In this case, he can tell that he was active
on the subject around 3/17 and 1/27, and he can check what he was
doing around that time by checking other files and messages around
it. It is useful for remembering what the user was doing when he



received a message. In this sense, this browser can be viewed as
another implementation of the Lifestreams system[7], with more
powerful searching and browsing mechanism.

3.3 Example 3: Program Browser
LensBar is also useful for browsing program texts. Figure 13 shows
how the program lensbar.c can be viewed using LensBar.

Figure 13: Program browser

When a variable name “mousex” is specified as the filtering
pattern, declaration statements and assignment statements related
to the variable are selected and listed in the scroll window (Figure
14). Positions corresponding to the lines are also shown in the
background of the slider, showing where in the program those lines
exist.

Figure 14: Selecting lines with “mousex”

DOI value Entry
0 displine()
0 {

-1 if(displayp){
...

0 }
0 lbmouse(LensBar *lb)
0 {
5 long mousex,mousey;

-1 long origx,origy;
...

5 mousex = getvaluator(MOUSEX);
5 startx = x = mousex - origx;

...
3 mousex = getvaluator(MOUSEX);

...
2 mousex = getvaluator(MOUSEX);

-4 display();
-1 }
0 }

Table 2: Assignment of DOI values

Since lines with less indentation is usually more important in
C program texts, large DOI values are assigned to lines with small
indentation, as shown in Table 2. Lines which match the pattern
string have positive DOI values, and other lines have DOI values
smaller than or equal to zero. When the user drags the mouse
to the right to expand the list, lines with large DOI values will
emerge. In this case, function definitions can be seen in addition to
the lines which contain “mousex” (Figure 15). In this way, users
can focus on a variable and examine a long program text, while
seeing the global context, just like using the FractalView editor[10]
or other editors which supports focus+context editing based on the
generalized fisheye views technique[8].

Figure 15: Showing important lines in addition to selected lines

Since this program browser is line-oriented, extending it to work as
a text editor can easily be done.

3.4 Example 4: Hierarchical Menu
LensBar can also be used as a substitute for a hierarchical menu.
Although hierarchical menus are widely used in current graphical
user interfaces, it suffers from many shortcomings. First, users
can’t see how large and deep the menu is. Second, users can’t tell
whether the menu contains the entry they want, until they search the



hierarchy intensively. Third, the operation is usually not reversible.
That is, when a user does something wrong (e.g. selecting a wrong
menu entry), he sometimes cannot go back to the previous state
by moving the mouse in the reverse direction, but he has to do the
entire selection operation from the start.

Using a LensBar in place of a conventional hierarchical menu,
all of the above problems are solved. We show this by using the
directory structure of Unix as an example of a very large hierarchical
menu.

Figure 16 shows the initial display of the menu. Files and
directories under /usr/lib/ is listed. In this application, large
DOI value is assigned to higher-level menu entries.

Figure 16: Showing the top menu

When the user clicks the mouse on X11 and drags to the right,
more files and directories with smaller DOI values become visible,
and subdirectories of the X11 directory are displayed as if the
directories is expanded like a hierarchical menu. (Figure 17)

Figure 17: Expanding a sub menu

The user can further expand the subdirectories and find an entry
k14.pcf.Z (a font file) in the X11/fonts/misc/ directory.

Figure 18: Finding an entry

When the user drags the mouse to the left from the position,
the menu will be shrunk to look like Figure 19. This is similar to
Figure 17, but all the operation is continuous and reversible, and
unlike conventional hierarchical menu, the user can easily go back
and forth between Figure 18 and Figure 19, just by dragging the
mouse horizontally.

Figure 19: Shrinking the menu

4 RELATED WORK

Many visualization and interaction techniques have been proposed
for browsing and filtering large data. Examples include Xerox
PARC’s Information Visualizer[4] and TableLens[16], nonlinear
magnification systems like Generalized Fisheye Views[8], Graph-
ical Fisheye Views[17] and Hyperbolic Visualizer[11], visualiza-
tion systems using fractal[10], 2D zooming systems like Pad[15]
and Pad++[3], 2D/3D zooming information retrieval system like
the WING system[14], various information visualization systems
developed at University of Maryland including FilmFinder[2], etc.
and most of the systems supports methods for browsing the whole
data, methods for filtering the data, and methods for showing the
focal point while retaining the context.

Although these techniques are useful in various application do-
mains, they tend to be special to particular applications, or their
interaction method is completely different from existing GUI tools,
as we have shown in Section 1. Also, most of the techniques are
not applicable to visualizing simple list of many number of items.

On the other hand, LensBar is a simple extension to conventional
slider and scrolling window, and its appearance and interaction
method are not very different from conventional GUI tools. In spite



of that, LensBar provides many powerful mechanisms for browsing
and filtering a large list of items.

Various extensions to conventional sliders have been proposed.
With AlphaSlider[1], users can control the sensitivity of the slider
knob by clicking different portion of the knob. FineSlider[13] also
enables users to move the slider knob precisely, and LensBar is
taking the same approach.

Furnas[9] argued that appropriate data structure is necessary
for navigating in a large data set, and as an example, he proposed
adding a tree structure for the efficient view traversal of a large list.
LensBar’s assignment of DOI values yields the same effect, without
using an additional tree structure.

LensBar’s method of using the background of the slider is some-
what similar to Eick’s “data visualization slider”[6] in that both of
them are trying to make more use of the screen real estate. Although
data visualization slider is useful for visualizing a large list, sup-
ported user operations are very different from conventional sliders
and should be considered as a completely different visualization
tool. Filtering and zooming are not supported in the data visual-
ization slider. Chimera’s ValueBars[5] is an approach to display
additional information of the list items in adjacent to a conventional
slider. This technique is useful in browsing various attributes of
listed items, and it would be interesting to add similar features to
LensBar.

5 CONCLUSION

We introduced a new powerful visualization and filtering technique
called the LensBar. Although LensBar looks and acts very much
like a conventional scroll window with a slider, its filtering and
zooming mechanism makes various sophisticated interaction possi-
ble. LensBar can be used in wide range of applications which handle
any kind of large lists, ranging from text browsers to hierarchical
menus.

References

[1] Christopher Ahlberg and Ben Shneiderman. AlphaSlider: A compact
and rapid selector. In Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI’94), pages 365–371. Addison-
Wesley, April 1994.

[2] Christopher Ahlberg and Ben Shneiderman. Visual information seek-
ing: Tight coupling of dynamic query filters with starfield displays. In
Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI’94), pages 313–317. Addison-Wesley, April 1994.

[3] Benjamin B. Bederson and James D. Hollan. Pad++: A zooming
graphical interface for exploring alternate interface physics. In Pro-
ceedings of the ACM Symposium on User Interface Software and
Technology (UIST’94), pages 17–26. ACM Press, November 1994.

[4] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The Information
Visualizer, an information workspace. In Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI’91), pages
181–188. Addison-Wesley, April 1991.

[5] Richard Chimera. Value Bars: An information visualization and nav-
igation tool for multi-attribute listings. In Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI’92), pages
293–294. Addison-Wesley, May 1992.

[6] Stephen G. Eick. Data visualization sliders. In Proceedings of the ACM
Symposium on User Interface Software and Technology (UIST’94),
pages 119–120. ACM Press, November 1994.

[7] Eric Freeman and Scott Fertig. Lifestreams: Organizing your elec-
tronic life. In AAAI Fall Symposium: AI Applications in Knowledge
Navigation and Retrieval, Cambridge, MA, November 1995.

[8] G. W.Furnas. Generalized fisheye views. In Proceedingsof the CHI’86
Conference on Human Factors in Computing Systems and Graphic
Interfaces, pages 16–23, Boston, May 1986. Addison-Wesley.

[9] George W. Furnas. Effective view navigation. In Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI’97),
pages 367–374. Addison-Wesley, April 1997.

[10] Hideki Koike and H. Yoshihara. Fractal approaches for visualizing
huge hierarchies. In Proceedings of 1993 IEEE Symposium on Vi-
sual Languages (VL’93), pages 55–60. IEEE Computer Society, IEEE
Computer Society Press, 1993.

[11] John Lamping, Ramana Rao, and Peter Pirolli. A focus+context tech-
nique based on hyperbolic geometry for visualizing large hierarchies.
In Proceedings of the ACM Conference on Human Factors in Com-
puting Systems (CHI’95). Addison-Wesley, May 1995.

[12] Toshiyuki Masui. An efficient text input method for pen-based com-
puters. In Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI’98), pages 328–335. Addison-Wesley, April
1998.

[13] Toshiyuki Masui, Kouichi Kashiwagi, and George R. Borden. Elastic
graphical interfaces for precise data manipulation. In CHI’95 Confer-
ence Companion, pages 143–144. Addison-Wesley, May 1995.

[14] Toshiyuki Masui, Mitsuru Minakuchi, George R. Borden IV, and
Kouichi Kashiwagi. Multiple-view approach for smooth information
retrieval. In Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST’95), pages 199–206. ACM Press,
November 1995.

[15] Ken Perlin and David Fox. Pad: An alternative approach to the
computer interface. In ACM SIGGRAPH’93 Conference Proceedings,
pages 57–64, August 1993.

[16] Ramana Rao and Stuart K. Card. The Table Lens: Merging graphical
and symbolic representations in an interactive focus + context visual-
ization for tabular information. In Proceedings of the ACM Conference
on Human Factors in Computing Systems (CHI’94), pages 318–322.
Addison-Wesley, April 1994.

[17] Manojit Sarkar and Mark H. Brown. Graphical fisheye views. Com-
munications of the ACM, 37(12):73–83, December 1994.

[18] Ben Shneiderman. Dynamic queries for visual information seeking.
IEEE Software, 11(6):70–77, November 1994.


